
Interactive keyword-based access

to large-scale structured datasets

2nd Keystone Summer School

20 July 2016

Dr. Elena Demidova

University of Southampton

1Keystone SS 2016

Overview

• Keyword-based access to structured data

• Usability and expressiveness

• Preparation of data for keyword-based access

• Indexing structured data

• Interactive query construction

• Building structured queries with user input

2Keystone SS 2016

Keyword-based access to structured data

Usability and expressiveness

3Keystone SS 2016

Keyword-based access to structured data

39

Using structure we could refine the results:

London… What do you mean?

A book title?

An author?

4Keystone SS 2016

Access to structured data: Search vs. query

Example: DBLP as a relational database containing paper-author relations

Keyword query: K = {Michelle, XML}

Structured query: Q = σmichelle name(Author) ⋈ Write ⋈ σ xml title(Paper)

(Example from [Yu et. al 2009])

5Keystone SS 2016

Structured queries
language, schema

(SQL, SPARQL, XQuery)

QBE (´75), NLQ (´99)

Database queries: Expressiveness vs. usability

C
o

m
p

li
c
a
te

d
E

a
s
y
 t

o
u

s
e

Less expressive More expressive

Usability

Expressiveness

Keyword search
possibly imprecise results

BANKS, DBXPlorer,

Discover (´02)

Goal:

Expressive AND

Easy to use

adapted from: [Tata et. al 2008]

6Keystone SS 2016

Database queries: Expressiveness vs. usability

• Database queries:

• knowledge of database schema

• knowledge of query language syntax

• Keyword search:

• Easy-to-use but imprecise

• Ambiguous: unclear information need

• Keyword query interpretation:

• Automatically translate keyword query in a (most likely)

structured query (-ies)

7Keystone SS 2016

Preparation of data for keyword-based access

Indexing structured data at the example of relational

databases

8Keystone SS 2016

Keyword query semantics

A l-keyword query K = {k1, k2, … , kl} –

a set of keywords of size l.

K semantics (typically): search for interconnected

tuples that jointly contain {k1, k2, … , kl}.

How can we find the tuples containing {k1, k2, … , kl} in a

database?

9Keystone SS 2016

Full-text search on a specific database attribute

Full-text search on specific attribute is supported by major

databases, e.g. using contains predicate:

contains (R.A, ki) – the predicate selecting all tuples from a relation

R that contain keyword ki in the text attribute R.A.

SELECT * FROM Author WHERE contains(Author.Name,
„Michelle“);

String comparison operators (e.g. like):

SELECT * FROM Author WHERE Author.Name LIKE '%michelle%';

Problem: need to search in each attribute separately

10Keystone SS 2016

DB indexing for keyword search

Inverted index using Lucene, Solr, Elasticsearch…

Granularity:

Tuple level:

Attribute level:

Dictionary Postings

Michelle -> Author.a3 Paper.p1 ...

XML -> Paper.p2 Paper.p3 …

Dictionary Postings

Michelle -> Author.Name Paper.Title ...

XML -> Paper.Title …
Differences?

11Keystone SS 2016

SQL full-text search vs. indexing

Built-in full-text search capabilities are database

dependent

Contains predicate can use indexes but is neither

flexible, nor not generally available

String comparison operators can require sequential

scan (e.g. like operator if the prefix is undefined)

Each textual attribute needs to be queried separately

In the global full-text index, the list of attributes is

immediately available

Index construction cost

Storage cost (depends on the index granularity)

12Keystone SS 2016

Query construction as a way to improve query

expressiveness

Building structured queries from keywords

13Keystone SS 2016

From keywords to structured queries:

An example

K = {Michelle, XML}

1. Identify tuples / attributes containing

keywords

σ michelle name(Author): michelle

σ xml title(Paper): xml

σ michelle title(Paper): michelle

2. Identify join paths to connect all
keywords in the query

Q = michelle name(Author) ⋈ Write ⋈ σ xml

title(Paper) Other paths?

DPLP example and definitions from: [Yu et. al 2009]

14Keystone SS 2016

From keywords to structured queries:

An example

K = {Michelle, XML}

Q = michelle name(Author) ⋈ Write ⋈ σ

xml title(Paper)

The translation K - > Q requires:

1. Knowledge of the schema graph

(tables, attributes, join paths)

2. Knowledge of keyword

occurrences

3. Efficient algorithms

15Keystone SS 2016

Definitions and notations: The schema graph

Schema graph: a directed graph Gs (V,E)

V – the set of relation schemas {R1, R2, … , Rn}. An

instance of a relation schema is a set of tuples (i.e. a

database table).

E - the set of edges Ri -> Rj between two relation

schemas. An edge is a primary key to foreign key

relation.

TID – primary key attribute (i.e. tuple identifier).

Text attribute – an attribute allowing full-text search.

16Keystone SS 2016

An example: The DBLP schema graph

Author

TID

Name

Write

TID

AID

PID

Paper

TID

Title

Cite

TID

PID1

PID2

Author Write Paper Cite
AID PID

PID1

PID2

A simplified representation of the schema graph:

17Keystone SS 2016

Definitions and notations: The database graph

The database graph: a directed graph GD (Vt, Et) on the

schema graph Gs.

Vt – the set of tuples {t1, t2, … , tn}.

Et - the set of edges between tuples.

Two tuples ti and tj are connected if there exists a

foreign key (fk) reference ti -> tj or tj -> ti.

Two tuples ti, tj are reachable if there exists a sequence

of connections between them, e.g. ti -> t1 , …. , tn -> tj.

The distance between two tuples dis(ti, tj) is the

minimum number of connections between ti, tj.

18Keystone SS 2016

An example: The DPLP database graph

The distance between two

tuples dis(ti, tj) is the

minimum number of

connections between

ti, tj.

dis (a1, p4)?

19Keystone SS 2016

Interconnecting keywords: MTJNT

An answer to a l-keyword query is a Minimal Total

Joining Network of Tuples (MTJNT).

JNT (Joining Network of Tuples) – a connected tree of

tuples. Every two adjacent tuples ti, tj in JNT an be

joined based on the fk-reference in the schema i.e.

either Ri -> Rj or Rj -> Ri (ignoring direction).

TJNT (Total JNT) w.r.t. a l-keyword query K if it contains

all keywords of K.

MTJNT (Minimal TJNT) if no tuple can be removed such

that JNT remains total.

Tmax – a size control parameter to define the maximum

number of tuples in MTJNT.

20Keystone SS 2016

Keyword query answers: MTJNT examples

K = {Michelle, XML}

Tmax = 5
contains (a3, „Michelle“)

contains (p1, „Michelle“)

contains (p2, „XML“)

contains (p3, „XML“)

MTJNTs:

21Keystone SS 2016

MTJNT issues

Size and scalability:

The data graph is potentially very large, i.e. search is very costly

The search space increases exponentially by adding new data

entries

Results semantics and presentation

The results are heterogeneous in terms of structure, i.e.

difficult to present and understand

Aggregation / summarization is needed

Generation of structured queries:

Schema graph is much smaller

Structured queries naturally aggregate MTJNTs

22Keystone SS 2016

Structured queries: Candidate Network (CN)

A keyword relation: a subset Ri {K‘} of relation Ri that contains a

subset K‘ of keywords from K (and no other keywords from K).
The subset can be empty Ri { }.

A Candidate Network (CN) is a connected tree of keyword relations.

Every two adjacent keyword relations Ri, Rj in CN are joined

based on the fk-reference in the schema Gs.

CN is total w.r.t. a l-keyword query K if its keyword relations jointly

contain all keywords of K.

CN is minimal if no keyword relation can be removed such that CN

remains total.

Tmax – a size control parameter to define the maximum number of

keyword relations in CN.

A CN can produce a set of possibly empty MTJNTs. One MTJNTs

can be generated by exactly one CN.

23Keystone SS 2016

CN examples

K = {Michelle, XML}, Tmax = 5, P{Michelle}, P{XML}, A{Michelle}

CNs:

24Keystone SS 2016

CN examples

K = {Michelle, XML}, Tmax = 5, P{Michelle}, P{XML}, A{Michelle}

CNs:

MTJNTs:

Which MTJNTs are generated by which CNs?

25Keystone SS 2016

Given are:

1. Keyword query K = {k1, k2, … , kl}

2. Schema graph Gs

3. The nodes of Gs containing each keyword ki in K

The Problem: Find the path(s) connecting all {k1, k2, … , kl} in Gs

(i.e. the structured query(-ies))

Example: K = {Michelle, XML}

CN generation algorithms

Author Write Paper Cite
AID PID

PID1

PID2

Michelle

XML

Michelle

26Keystone SS 2016

Complexity: similar to the Steiner tree problem - find the

shortest interconnect for a given set of objects: NP-complete.

Approximation algorithms:

Iteratively explore the schema graph to construct the paths

BFS/DFS

Data structures?

CN generation algorithms

Author Write Paper Cite
AID PID

PID1

PID2

Michelle

XML

Michelle

27Keystone SS 2016

Search on the schema graph Gs (with keyword relations)

Breadth-First-Search (BFS): queue

Step i:

Step i+1:

Search algorithms and data structures: BFS

V1

V2

V4

V5

V3 V6

V1

enqueue ….

V1

V2

V1

V3

…. dequeue

28Keystone SS 2016

Search on the schema graph Gs (with keyword relations)

Breadth-First-Search (BFS): queue

Step j:

Step j+1:

Search algorithms and data structures: BFS

V1

V2

V4

V5

V3 V6

V1

V2

V1

V2

V4

V1

V2 V5

enqueue ….

…. dequeue

29Keystone SS 2016

Search on the schema graph Gs (with keyword relations)

Depth First Search (DFS) – for top-k generation:

Stack

Search algorithms and data structures: DFS

pop

push

V1

V1

V2

V1

V2

V4

V5

V3 V6

pop

push
V1

V2

V1

V2

V4

30Keystone SS 2016

CN generation algorithm (BFS-based): Discover

Rule 1: duplicate elim.

Rule 2: minimality

Rule 3: avoid cycles

Notation: here Q is a keyword query!

algorithm from [Hristidis et. al. 2002]

31Keystone SS 2016

CN generation: An example

enqueue: P{Michelle}, P{XML}, A{Michelle}

dequeue: T1 <- A{Michelle}

expand: T2 <- A{Michelle} ⨝ W{}

enqueue: T2

…

dequeue: T2 <- A{Michelle} ⨝ W{}

expand: T3 <- A{Michelle} ⨝ W{} ⨝

P{XML}

enqueue: T3

…

dequeue: T3, check if T3 is minimal and
total, add T3 to the result

Keyword relations:
P{Michelle}, P{XML}, A{Michelle}
…

Author Write Paper Cite
AID PID

PID1

PID2

Michelle

XML

Michelle

32Keystone SS 2016

Complexity factors:

• Size of the schema graph Gs – the number of nodes and

edges

• Maximum number of joins (Tmax)

• Size of the keyword query (l)

The number of CNs grows exponentially with these factors.

Algorithm optimizations:

• Avoid generation of duplicate CNs by defining the expansion

order

• Generate only the top-k CNs

• …

CN generation: Complexity and optimizations

33Keystone SS 2016

Ranking can be performed at CN and MTJNT levels

Typical ranking factors include:

• Size of the CN / tuple tree – preference to the short paths

• IR-Style factors

• Frequency-based keyword weights

• Keyword selectivity (IDF)

• Length normalizations

• Global attribute weight in a database (PageRank /

ObjectRank)

Typically, the factors are combined

CN and MTJNT ranking factors

34Keystone SS 2016

Ranking query interpretations: An example

Rank the following CNs using the size factor:

35Keystone SS 2016

Interactive query construction

Building structured queries with user input

36Keystone SS 2016

Query construction for large scale databases

• Freebase:

• 22 millions entities, more than 350 millions facts

• more than 7,500 relational tables

• about 100 domains

• Wikipedia, MusicBrainz, …

• part of the LOD cloud

• Goal:

• Enable efficient and

scalable query

construction solutions

for large scale data

37Keystone SS 2016

A film adaptation starring

Tom Hanks was attempted

[…]

after the actor's

performances

in The Terminal (2004)

Feng Zhenghu has been likened

to the Tom Hanks

character in The Terminal

An article in

Entertainment Weekly

did a comparison to the

Tom Hanks film The

Terminal

Tom Hanks' character Viktor

Navorski is stuck at New York's JFK

airport in the United terminal in The

Terminal
38Keystone SS 2016

Structured MQL query for „Tom Hanks Terminal“

[{

"!pd:/film/actor/film": [{

"name": "Tom Hanks"

"type": "/film/actor"}],

"film":[{

"name" : "The Terminal"

"type" : "/film/film"}],

"character":{

"name" : null }

"type": "/film/performance"

}]

http://www.freebase.com/query

Requires prior knowledge of:

Schema: above 1000 entity

types (relational tables)

Specialized query language:

MQL

39Keystone SS 2016

http://www.freebase.com/query

Query interpretation techniques

• Automatic keyword query interpretation:

• Automatically translate keyword query in the (most

likely) structured query (-ies)

• No one size fits all – no perfect ranking for every query

and every user

• If ranking fails, navigation cost can be inacceptable

• too many interpretations / search results

• Interactive query refinement

• Goal: Enable users to incrementally refine a keyword

query into the intended interpretation on the target

database in a minimal number of interactions

40Keystone SS 2016

Query interpretation

A query interpretation consists of:

• A set of keyword interpretations I that map a keyword to a value of

an attribute (also interpretations as an attribute or table name are

possible)

• A query template T

σ hanks name(Actor):hanks

σ 2001 year(Movie):2001 σ cruise name(Actor):cruise

T= σ? name (Actor) ⋈ Acts ⋈ σ? year (Movie) ⋈ Acts ⋈ σ? name

(Actor)

41Keystone SS 2016

K=“hanks cruise 2001”

σ hanks name(Actor):hanks σ 2001 year(Movie):2001

σ cruise name(Actor):cruise

+

T= σ? name (Actor) ⋈ Acts ⋈ σ? year (Movie) ⋈ Acts ⋈ σ? name

(Actor)

=

Q = σhanks name (Actor)⋈Acts⋈σ2001 year(Movie)⋈Acts⋈σcruise name (Actor)

 interpretation space of K

partial interpretation of K, sub-query of Q

complete interpretation of K (structured query)

Query interpretation

42Keystone SS 2016

Query hierarchy
K = “Tom Hanks 2001”

43Keystone SS 2016

Query construction options (QCO)

Idea: use partial interpretations (sub-queries) as user interaction

items (QCO)

Problem: large number of queries – and sub-queries (QCOs)

How to select a QCO to present to the user?

σ hanks name(Actor):hanks

Q’ = σ hanks name (Actor) ⋈ Acts ⋈ σ2001 year(Movie)

σ 2001 year(Movie):2001

σ cruise name(Actor):cruise

σ2001 year(Movie) ⋈ Acts ⋈ σ cruise name (Actor)

44Keystone SS 2016

Query construction plan (QCP) as a binary tree

Idea: use sub-query relations to organize the options in a

(binary) tree structure
The root node is the entire interpretation

space

A leaf node is a single complete query interpretation

Problem: How to find an optimal QCP?

σ hanks name (Actor) ⋈ Acts ⋈ σ2001

year(Movie) ⋈ Acts ⋈ σ cruise name

(Actor)

QCO1: σ hanks name(Actor):hanks

QCO2: σ 2001 year(Movie):2001

Yes No

Yes No

QCO…

QCO…

Remove

queries

conflicting with

QCO1

Remove

queries

that subsume

QCO1

45Keystone SS 2016

Defining a cost function for QCP

Idea: define a cost function

Take query probability into account

Construction of the most likely queries should not incur much

cost

Given a keyword query K, how to compute the probability of leaf

nodes (i.e. complete query interpretations of K)?

K (a keyword query) = {hanks, 2001, cruise}

Q (a leaf node of QCP) =

σ hanks name (Actor) ⋈ Acts ⋈σ2001 year(Movie) ⋈ Acts ⋈ σcruise name (Actor)

P(leaf) = P(Q|K): the conditional probability that, given K, Q is the

user intended complete interpretation of K.

QCPleaf

leafPleafdepthQCPCost)()()(

46Keystone SS 2016

Query interpretation: assumptions

Assumption 1 (Keyword Independence): Assume

that the interpretation of each keyword in a keyword

query is independent from the other keywords.

Assumption 2 (Keyword Interpretation Independence):

Assume that the probability of a keyword

interpretation is independent from the part of the

query interpretation the keyword is not interpreted to.

47Keystone SS 2016

Probability of a query interpretation

 I is the set of keyword interpretations {Ai:ki} in Q

 T is the template of Q

T= σ? name (Actor) ⋈ Acts ⋈ σ? year (Movie) ⋈ Acts ⋈ σ? name (Actor)

Estimates for P(T) and P(Ai:ki|Ai) ?

 KTIPKQP |,)|(

)(|:)|(TPAkAPKQP
Kk

iii

i

σ hanks name(Actor):hanks

σ 2001 year(Movie):2001 σ cruise name(Actor):cruise

48Keystone SS 2016

 We model the formation of a query interpretation as a random

process.

 For an attribute Ai, this process randomly picks one of its

instances aj and randomly picks a keyword ki from that instance

to form the expression σki
∈Ai.

 Then, the probability of P(σki
∈Ai |σ?∈Ai) is the probability that

σki
∈Ai is formed through this random process.

Example:

P(σ hanks name (Actor) |σ?∈ name

(Actor))

T= σ? name (Actor) ⋈ Acts ⋈ σ? year (Movie) ⋈ Acts ⋈ σ? name

(Actor)

Q = σ hanks name (Actor) ⋈ Acts ⋈ σ2001 year(Movie) ⋈ Acts ⋈ σ cruise name

(Actor)

Probability of a keyword interpretation

49Keystone SS 2016

P(σki
∈Ai |σ?∈Ai) can be estimated using Attribute Term

Frequency (ATF):

ATF(ki, Ai) - the normalized keyword frequency of ki in Ai

NAi
– the number of keywords in Ai

ɑ - a smoothing parameter (typically ɑ =1: Laplace

smoothing)

B – the vocabulary size

Probability of a keyword interpretation

ATF (ki, Ai) = (TF(ki, Ai)+ɑ) / (NAi
+ɑ*B)

50Keystone SS 2016

P(T) = (#occurences(T) +ɑ) / (N + ɑ*B)

#occurences(T) - number of queries in the log using T
as a template

N - total number of queries in the log

α - smoothing parameter, typically set to 1

B – a constant

When the query log is absent or is not sufficient, we

assume that all query templates are equally probable.

Probability of a query template

51Keystone SS 2016

Challenges in query interpretation

 Inefficient QCOs

 Too many keyword interpretations

 A keyword interpretation subsumes a small proportion of the I-

space, more general QCOs are needed

 Very large interpretation space

 The number of subgraphs of the schema graph grows very

sharply with the size of the schema graph. The occurrences of

keywords are more numerous in a larger database. Too many

query interpretations.

 Existing query interpretation approaches rely on a completely

materialized interpretation space. This is no longer feasible.

 Need to enable incremental materialization of the interpretation

space

52Keystone SS 2016

Query construction algorithm

- Query hierarchy can become very large

- Use greedy algorithms

- Expand query hierarchy incrementally

- Use a threshold to restrict the size of the top level

- Select the QCO to be presented to the user based on

Information Gain (IG)

- IG can be computed using probability of query interpretation

53Keystone SS 2016

Query-based QCOs

 Keyword as schema terms or attribute values

actor.name: hanks (Hanks is in the actor’s name)

 Joins using pk-fk relationships in the schema graph

 actor.name: hanks – acts – film.name: terminal

actor.name director.name ….hanks

film.name
company.nam

e
location.name …

terminal

filmacto

r

acts

54Keystone SS 2016

Person: [hanks] Object: [hanks]

Deceased Person

[hanks]

TV Episode

[hanks]
Organization

[hanks]

Actor

[hanks] …

 Freebase domain hierarchy

 Arts & Entertainment, Society

 External ontologies

 E.g. YAGO+F mapping between YAGO and

Freebase

 Person, Location, Object

Ontology-based QCOs

55Keystone SS 2016

FreeQ query hierarchy example

….

….

Arts & Entertainment:

Tom Hanks

Society:

Tom Hanks

Actor:

Tom Hanks

Celebrity:

Tom Hanks

Award Nomination

Award Nominee: Tom Hanks

Nominated For: Terminal

Actor

Name:Tom Hanks

Acts
Film

Name:Terminal

….

Ontology-based QCOs:

Query-based QCOs:

The arrows represent sub-query relationship
56Keystone SS 2016

A measure of QCO efficiency

Expected information gain of a QCO as entropy reduction:

Entropy of the query interpretation space:

Entropy of O computed using P(O):

57Keystone SS 2016

Probability estimation for QCOs

Probability of a QCO using probabilities of the

subsumed query interpretations:

Estimation of QCO probability using materialized part

of the query hierarchy:

58Keystone SS 2016

Efficient hierarchy traversal

 Query initialization:

 Path indexing: for each table, index all paths leading to

keywords within radius r/2 (bi-directional):

 Is independent of keyword query length

 User interaction:

 Use path index to materialize QCOs and query interpretations

incrementally by BF-k and DF-k

 Start expansion with the most probable QCOs

 Thresholds, time limits

59Keystone SS 2016

[Demidova et. al 2013]

60Keystone SS 2016

Discussion

 Interactive query construction can enable efficient and

scalable query solutions for large scale data

 It can involve ontologies to summarize and enrich database

schema using abstract concepts (e.g. using YAGO ontology)

 Query interpretation space on large scale data can and

should be materialized incrementally

61Keystone SS 2016

References

[Yu et. al 2009] Jeffrey Xu Yu, Lu Qin, Lijun Chang. Keyword Search in

Databases. Synthesis Lectures on Data Management. Morgan &

Claypool Publishers. 2009. (Chapter 2.)

[Qin et. al 2009] Lu Qin, Jeffrey Xu Yu, and Lijun Chang. Keyword search in

databases: the power of RDBMS. In Proc. of the 2009 ACM SIGMOD

[Hristidis et. al 2002] Vagelis Hristidis and Yannis Papakonstantinou.

Discover: keyword search in relational databases. In Proc. of VLDB

2002.

[Demidova et. al 2012] Elena Demidova, Xuan Zhou, Wolfgang Nejdl: A

Probabilistic Scheme for Keyword-Based Incremental Query

Construction. IEEE Trans. Knowl. Data Eng. 24(3): 426-439 (2012).

[Demidova et. al 2013] Elena Demidova, Xuan Zhou, and Wolfgang Nejdl.

2013. Efficient query construction for large scale data. In Proc. of the
ACM SIGIR 2013.

62Keystone SS 2016

Further reading

[Tata et. al 2008] Sandeep Tata and Guy M. Lohman. SQAK: doing more

with keywords. In Proc. of the 2008 ACM SIGMOD.

[Nandi et. al 2009] Nandi, A., Jagadish, H.V.: Qunits: queried units in

database search. In CIDR (2009).

[Jayapandian et. al 2008] Magesh Jayapandian and H. V. Jagadish. 2008.

Expressive query specification through form customization. In Proc. of

the EDBT 2008.

[Chu et. al 2009] Eric Chu, Akanksha Baid, Xiaoyong Chai, AnHai Doan, and

Jeffrey Naughton. 2009. Combining keyword search and forms for ad

hoc querying of databases. In Proc. of the 2009 ACM SIGMOD.

63Keystone SS 2016

Questions, Comments?

Dr. Elena Demidova

Web and Internet Science Group

University of Southampton

e.demidova@soton.ac.uk

64Keystone SS 2016

