
Interactive keyword-based access 

to large-scale structured datasets

2nd Keystone Summer School

20 July 2016

Dr. Elena Demidova

University of Southampton

1Keystone SS 2016



Overview

• Keyword-based access to structured data

• Usability and expressiveness

• Preparation of data for keyword-based access

• Indexing structured data

• Interactive query construction

• Building structured queries with user input
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Keyword-based access to structured data

Usability and expressiveness
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Keyword-based access to structured data

39

Using structure we could refine the results:

London… What do you mean?

A book title? 

An author?
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Access to structured data: Search vs. query

Example: DBLP as a relational database containing paper-author relations

Keyword query: K = {Michelle, XML}

Structured query: Q = σmichelle  name(Author) ⋈ Write ⋈ σ xml  title(Paper)

(Example from [Yu et. al 2009]) 
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Structured queries
language, schema 

(SQL, SPARQL, XQuery)

QBE (´75), NLQ (´99)

Database queries: Expressiveness vs. usability
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Less expressive More expressive

Usability

Expressiveness

Keyword search
possibly imprecise results 

BANKS, DBXPlorer, 

Discover (´02)

Goal: 

Expressive AND 

Easy to use

adapted from: [Tata et. al 2008]
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Database queries: Expressiveness vs. usability

• Database queries: 

• knowledge of database schema

• knowledge of query language syntax

• Keyword search:

• Easy-to-use but imprecise

• Ambiguous: unclear information need

• Keyword query interpretation:

• Automatically translate keyword query in a (most likely) 

structured query (-ies)
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Preparation of data for keyword-based access 

Indexing structured data at the example of relational 

databases
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Keyword query semantics

A l-keyword query K = {k1, k2, … , kl} –

a set of keywords of size l.

K semantics (typically): search for interconnected 

tuples that jointly contain {k1, k2, … , kl}.

How can we find the tuples containing {k1, k2, … , kl} in a 

database?
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Full-text search on a specific database attribute

Full-text search on specific attribute is supported by major 

databases, e.g. using contains predicate:

contains (R.A, ki) – the predicate selecting all tuples from a relation 

R that contain keyword ki in the text attribute R.A.

SELECT * FROM Author WHERE contains(Author.Name, 
„Michelle“);

String comparison operators (e.g. like): 

SELECT * FROM Author WHERE Author.Name LIKE '%michelle%';

Problem: need to search in each attribute separately
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DB indexing for keyword search

Inverted index using Lucene, Solr, Elasticsearch…

Granularity:  

Tuple level:

Attribute level:

Dictionary Postings

Michelle -> Author.a3 Paper.p1 ...

XML -> Paper.p2 Paper.p3 …

Dictionary Postings

Michelle -> Author.Name Paper.Title ...

XML -> Paper.Title …
Differences? 
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SQL full-text search vs. indexing

Built-in full-text search capabilities are database 

dependent

Contains predicate can use indexes but is neither 

flexible, nor not generally available

String comparison operators can require sequential 

scan (e.g. like operator if the prefix is undefined)

Each textual attribute needs to be queried separately

In the global full-text index, the list of attributes is 

immediately available

Index construction cost 

Storage cost (depends on the index granularity)
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Query construction as a way to improve query 

expressiveness

Building structured queries from keywords
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From keywords to structured queries: 

An example

K = {Michelle, XML}

1. Identify tuples / attributes containing 

keywords

σ michelle  name(Author): michelle

σ xml  title(Paper): xml

σ michelle  title(Paper): michelle

2. Identify join paths to connect all 
keywords in the query 

Q = michelle  name(Author) ⋈ Write ⋈ σ xml 

title(Paper) Other paths?

DPLP example and definitions from: [Yu et. al 2009]
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From keywords to structured queries: 

An example

K = {Michelle, XML}

Q = michelle  name(Author) ⋈ Write ⋈ σ 

xml  title(Paper)

The translation K - > Q requires:

1. Knowledge of the schema graph

(tables, attributes, join paths)

2. Knowledge of keyword 

occurrences

3. Efficient algorithms
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Definitions and notations: The schema graph

Schema graph: a directed graph Gs (V,E)

V – the set of relation schemas {R1, R2, … , Rn}. An 

instance of a relation schema is a set of tuples (i.e. a 

database table). 

E - the set of edges Ri -> Rj between two relation 

schemas. An edge is a primary key to foreign key 

relation.

TID – primary key attribute (i.e. tuple identifier).

Text attribute – an attribute allowing full-text search.
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An example: The DBLP schema graph

Author

TID

Name

Write

TID

AID

PID

Paper

TID

Title

Cite

TID

PID1

PID2

Author Write Paper Cite
AID PID

PID1

PID2

A simplified representation of the schema graph:

17Keystone SS 2016



Definitions and notations: The database graph

The database graph: a directed graph GD (Vt, Et) on the 

schema graph Gs. 

Vt – the set of tuples {t1, t2, … , tn}. 

Et - the set of edges between tuples.

Two tuples ti and tj are connected if there exists a 

foreign key (fk) reference ti -> tj or tj -> ti.

Two tuples ti, tj are reachable if there exists a sequence 

of connections between them, e.g. ti -> t1 , …. , tn -> tj.

The distance between two tuples dis(ti, tj ) is the 

minimum number of connections between ti, tj.

18Keystone SS 2016



An example: The DPLP database graph

The distance between two 

tuples dis(ti, tj ) is the 

minimum number of 

connections between 

ti, tj.

dis (a1, p4)? 

19Keystone SS 2016



Interconnecting keywords: MTJNT

An answer to a l-keyword query is a Minimal Total 

Joining Network of Tuples (MTJNT).

JNT (Joining Network of Tuples) – a connected tree of 

tuples. Every two adjacent tuples ti, tj in JNT an be 

joined based on the fk-reference in the schema  i.e. 

either Ri -> Rj or Rj -> Ri (ignoring direction).

TJNT (Total JNT) w.r.t. a l-keyword query K if it contains 

all keywords of K.

MTJNT (Minimal TJNT) if no tuple can be removed such 

that JNT remains total.

Tmax – a size control parameter to define the maximum 

number of tuples in MTJNT.
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Keyword query answers: MTJNT examples

K = {Michelle, XML}

Tmax = 5 
contains (a3, „Michelle“)

contains (p1, „Michelle“)

contains (p2, „XML“)

contains (p3, „XML“)

MTJNTs:

21Keystone SS 2016



MTJNT issues

Size and scalability: 

The data graph is potentially very large, i.e. search is very costly

The search space increases exponentially by adding new data 

entries 

Results semantics and presentation 

The results are heterogeneous in terms of structure, i.e. 

difficult to present and understand 

Aggregation / summarization is needed

Generation of structured queries:

Schema graph is much smaller

Structured queries naturally aggregate MTJNTs
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Structured queries: Candidate Network (CN)

A keyword relation: a subset Ri {K‘} of relation Ri that contains a 

subset K‘ of keywords from K (and no other keywords from K). 
The subset can be empty Ri { }.

A Candidate Network (CN) is a connected tree of keyword relations. 

Every two adjacent keyword relations Ri, Rj in CN are joined 

based on the fk-reference in the schema Gs.

CN is total w.r.t. a l-keyword query K if its keyword relations jointly 

contain all keywords of K. 

CN is minimal if no keyword relation can be removed such that CN 

remains total.

Tmax – a size control parameter to define the maximum number of 

keyword relations in CN.

A CN can produce a set of possibly empty MTJNTs. One MTJNTs 

can be generated by exactly one CN.
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CN examples

K = {Michelle, XML}, Tmax = 5, P{Michelle}, P{XML}, A{Michelle}

CNs:
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CN examples

K = {Michelle, XML}, Tmax = 5, P{Michelle}, P{XML}, A{Michelle}

CNs:

MTJNTs:

Which MTJNTs are generated by which CNs?
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Given are:

1. Keyword query K = {k1, k2, … , kl} 

2. Schema graph Gs 

3. The nodes of Gs containing each keyword ki in K 

The Problem: Find the path(s) connecting all {k1, k2, … , kl}  in Gs  

(i.e. the structured query(-ies))

Example: K = {Michelle, XML}

CN generation algorithms

Author Write Paper Cite
AID PID

PID1

PID2

Michelle

XML

Michelle
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Complexity: similar to the Steiner tree problem - find the 

shortest interconnect for a given set of objects: NP-complete.

Approximation algorithms:

Iteratively explore the schema graph to construct the paths

BFS/DFS

Data structures?

CN generation algorithms

Author Write Paper Cite
AID PID

PID1

PID2

Michelle

XML

Michelle
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Search on the schema graph Gs (with keyword relations)

Breadth-First-Search (BFS): queue

Step i:

Step i+1:

Search algorithms and data structures: BFS

V1

V2

V4

V5

V3 V6

V1

enqueue ….

V1

V2

V1

V3

…. dequeue
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Search on the schema graph Gs (with keyword relations)

Breadth-First-Search (BFS): queue

Step j:

Step j+1:

Search algorithms and data structures: BFS

V1

V2

V4

V5

V3 V6

V1

V2

V1

V2

V4

V1

V2 V5

enqueue ….

…. dequeue
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Search on the schema graph Gs (with keyword relations)

Depth First Search (DFS) – for top-k generation: 

Stack

Search algorithms and data structures: DFS

pop

push

V1

V1

V2

V1

V2

V4

V5

V3 V6

pop

push
V1

V2

V1

V2

V4
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CN generation algorithm (BFS-based): Discover

Rule 1: duplicate elim.

Rule 2: minimality

Rule 3: avoid cycles

Notation: here Q is a keyword query!

algorithm from [Hristidis et. al. 2002]
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CN generation: An example

enqueue: P{Michelle}, P{XML}, A{Michelle}

dequeue: T1 <- A{Michelle}

expand: T2 <- A{Michelle} ⨝ W{}

enqueue: T2

…

dequeue: T2 <- A{Michelle} ⨝ W{}

expand: T3 <- A{Michelle} ⨝ W{} ⨝

P{XML}

enqueue: T3

…

dequeue: T3, check if T3 is minimal and 
total, add T3 to the result  

Keyword relations: 
P{Michelle}, P{XML}, A{Michelle}
…

Author Write Paper Cite
AID PID

PID1

PID2

Michelle

XML

Michelle
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Complexity factors:

• Size of the schema graph Gs – the number of nodes and 

edges

• Maximum number of joins (Tmax)

• Size of the keyword query (l)

The number of CNs grows exponentially with these factors.

Algorithm optimizations:

• Avoid generation of duplicate CNs by defining the expansion 

order 

• Generate only the top-k CNs

• …

CN generation: Complexity and optimizations
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Ranking can be performed at CN and MTJNT levels

Typical ranking factors include:

• Size of the CN / tuple tree – preference to the short paths

• IR-Style factors

• Frequency-based keyword weights

• Keyword selectivity (IDF)

• Length normalizations

• Global attribute weight in a database (PageRank / 

ObjectRank)

Typically, the factors are combined

CN and MTJNT ranking factors
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Ranking query interpretations: An example

Rank the following CNs using the size factor:
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Interactive query construction

Building structured queries with user input
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Query construction for large scale databases

• Freebase: 

• 22 millions entities, more than 350 millions facts 

• more than 7,500 relational tables

• about 100 domains

• Wikipedia, MusicBrainz, …

• part of the LOD cloud

• Goal:

• Enable efficient and 

scalable query 

construction solutions 

for large scale data
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A film adaptation starring 

Tom Hanks was attempted 

[…] 

after the actor's 

performances

in The Terminal (2004)

Feng Zhenghu has been likened 

to the Tom Hanks 

character in The Terminal

An article in 

Entertainment Weekly 

did a comparison to the 

Tom Hanks film The 

Terminal

Tom Hanks' character Viktor 

Navorski is stuck at New York's JFK 

airport in the United terminal in The 

Terminal
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Structured MQL query for „Tom Hanks Terminal“

[{

"!pd:/film/actor/film": [{

"name": "Tom Hanks"

"type": "/film/actor"}],

"film":[{

"name" : "The Terminal"

"type" : "/film/film"}],

"character":{

"name" : null }

"type": "/film/performance"

}]

http://www.freebase.com/query

Requires prior knowledge of:

Schema: above 1000 entity

types (relational tables)

Specialized query language: 

MQL 
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Query interpretation techniques

• Automatic keyword query interpretation:

• Automatically translate keyword query in the (most 

likely) structured query (-ies)

• No one size fits all – no perfect ranking for every query 

and every user

• If ranking fails, navigation cost can be inacceptable

• too many interpretations / search results

• Interactive query refinement

• Goal: Enable users to incrementally refine a keyword 

query into the intended interpretation on the target 

database in a minimal number of interactions
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Query interpretation 

A query interpretation consists of: 

• A set of keyword interpretations I that map a keyword to a value of 

an attribute (also interpretations as an attribute or table name are 

possible)

• A query template T

σ hanks  name(Actor):hanks

σ 2001  year(Movie):2001 σ cruise  name(Actor):cruise

T= σ?  name (Actor) ⋈ Acts ⋈ σ?  year (Movie) ⋈ Acts ⋈ σ?  name 

(Actor) 
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K=“hanks cruise 2001”

σ hanks  name(Actor):hanks σ 2001  year(Movie):2001

σ cruise  name(Actor):cruise

+ 

T= σ?  name (Actor) ⋈ Acts ⋈ σ?  year (Movie) ⋈ Acts ⋈ σ?  name 

(Actor) 

=

Q = σhanks  name (Actor)⋈Acts⋈σ2001  year(Movie)⋈Acts⋈σcruise name (Actor) 

 interpretation space of K

partial interpretation of K, sub-query of Q

complete interpretation of K (structured query)

Query interpretation
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Query hierarchy
K = “Tom Hanks 2001”
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Query construction options (QCO)

Idea: use partial interpretations (sub-queries) as user interaction 

items (QCO)

Problem: large number of queries – and sub-queries (QCOs)

How to select a QCO to present to the user?

σ hanks  name(Actor):hanks

Q’ = σ hanks  name (Actor) ⋈ Acts ⋈ σ2001  year(Movie) 

σ 2001  year(Movie):2001

σ cruise  name(Actor):cruise

σ2001  year(Movie) ⋈ Acts ⋈ σ cruise name (Actor)
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Query construction plan (QCP) as a binary tree

Idea: use sub-query relations to organize the options in a 

(binary) tree structure 
The root node is the entire interpretation 

space

A leaf node is a single complete query interpretation

Problem: How to find an optimal QCP?

σ hanks  name (Actor) ⋈ Acts ⋈ σ2001 

year(Movie) ⋈ Acts ⋈ σ cruise name 

(Actor)

QCO1: σ hanks  name(Actor):hanks

QCO2: σ 2001  year(Movie):2001

Yes No

Yes No

QCO…

QCO…

Remove 

queries 

conflicting with 

QCO1

Remove 

queries 

that subsume 

QCO1
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Defining a cost function for QCP

Idea: define a cost function

Take query probability into account

Construction of the most likely queries should not incur much 

cost

Given a keyword query K, how to compute the probability of leaf 

nodes (i.e. complete query interpretations of K)? 

K (a keyword query) = {hanks, 2001, cruise}

Q (a leaf node of QCP) = 

σ hanks  name (Actor) ⋈ Acts ⋈σ2001  year(Movie) ⋈ Acts ⋈ σcruise name (Actor)

P(leaf) = P(Q|K): the conditional probability that, given K, Q is the

user intended complete interpretation of K.





QCPleaf

leafPleafdepthQCPCost )()()(
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Query interpretation: assumptions

Assumption 1 (Keyword Independence): Assume

that the interpretation of each keyword in a keyword

query is independent from the other keywords. 

Assumption 2 (Keyword Interpretation Independence):

Assume that the probability of a keyword

interpretation is independent from the part of the

query interpretation the keyword is not interpreted to. 
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Probability of a query interpretation

 I is the set of keyword interpretations {Ai:ki} in Q

 T is the template of Q

T= σ?  name (Actor) ⋈ Acts ⋈ σ?  year (Movie) ⋈ Acts ⋈ σ?  name (Actor)

Estimates for P(T) and P(Ai:ki|Ai) ?

 KTIPKQP |,)|( 

  )(|:)|( TPAkAPKQP
Kk

iii

i















 



σ hanks  name(Actor):hanks

σ 2001  year(Movie):2001 σ cruise  name(Actor):cruise
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 We model the formation of a query interpretation as a random 

process. 

 For an attribute Ai, this process randomly picks one of its 

instances aj and randomly picks a keyword ki from that instance 

to form the expression σki
∈Ai. 

 Then, the probability of P(σki
∈Ai |σ?∈Ai) is the probability that 

σki
∈Ai is formed through this random process.

Example: 

P(σ hanks  name (Actor) |σ?∈ name 

(Actor))  

T= σ?  name (Actor) ⋈ Acts ⋈ σ?  year (Movie) ⋈ Acts ⋈ σ?  name 

(Actor) 

Q = σ hanks  name (Actor) ⋈ Acts ⋈ σ2001  year(Movie) ⋈ Acts ⋈ σ cruise name 

(Actor) 

Probability of a keyword interpretation

49Keystone SS 2016



P(σki
∈Ai |σ?∈Ai) can be estimated using Attribute Term 

Frequency (ATF):

ATF(ki, Ai) - the normalized keyword frequency of ki in Ai

NAi
– the number of keywords in Ai 

ɑ - a smoothing parameter (typically ɑ =1: Laplace 

smoothing) 

B – the vocabulary size

Probability of a keyword interpretation

ATF (ki, Ai) = (TF(ki, Ai)+ɑ) / (NAi
+ɑ*B)
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P(T) = (#occurences(T) +ɑ) / (N + ɑ*B)

#occurences(T) - number of queries in the log using T
as a template

N - total number of queries in the log

α - smoothing parameter, typically set to 1

B – a constant

When the query log is absent or is not sufficient, we 

assume that all query templates are equally probable.

Probability of a query template
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Challenges in query interpretation

 Inefficient QCOs

 Too many keyword interpretations 

 A keyword interpretation subsumes a small proportion of the I-

space, more general QCOs are needed

 Very large interpretation space

 The number of subgraphs of the schema graph grows very 

sharply with the size of the schema graph. The occurrences of 

keywords are more numerous in a larger database. Too many 

query interpretations.

 Existing query interpretation approaches rely on a completely 

materialized interpretation space. This is no longer feasible.

 Need to enable incremental materialization of the interpretation 

space
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Query construction algorithm

- Query hierarchy can become very large

- Use greedy algorithms

- Expand query hierarchy incrementally 

- Use a threshold to restrict the size of the top level

- Select the QCO to be presented to the user based on 

Information Gain (IG)

- IG can be computed using probability of query interpretation
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Query-based QCOs

 Keyword as schema terms or attribute values

actor.name: hanks (Hanks is in the actor’s name)

 Joins using pk-fk relationships in the schema graph 

 actor.name: hanks – acts – film.name: terminal

actor.name director.name ….hanks

film.name
company.nam

e
location.name …

terminal

filmacto

r

acts
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Person: [hanks] Object: [hanks]

Deceased Person

[hanks] 

TV Episode

[hanks] 
Organization

[hanks]

Actor

[hanks] …

 Freebase domain hierarchy

 Arts & Entertainment, Society

 External ontologies

 E.g. YAGO+F mapping between YAGO and 

Freebase 

 Person, Location, Object

Ontology-based QCOs
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FreeQ query hierarchy example

….

….

Arts & Entertainment: 

Tom Hanks 

Society: 

Tom Hanks 

Actor: 

Tom Hanks 

Celebrity: 

Tom Hanks 

Award Nomination 

Award Nominee: Tom Hanks 

Nominated For: Terminal

Actor

Name:Tom Hanks 

Acts
Film

Name:Terminal

….

Ontology-based QCOs:

Query-based QCOs:

The arrows represent sub-query relationship
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A measure of QCO efficiency

Expected information gain of a QCO as entropy reduction:

Entropy of the query interpretation space:

Entropy of O computed using P(O):
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Probability estimation for QCOs

Probability of a QCO using probabilities of the 

subsumed query interpretations:

Estimation of QCO probability using materialized part 

of the query hierarchy:
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Efficient hierarchy traversal

 Query initialization:

 Path indexing: for each table, index all paths leading to 

keywords within radius r/2 (bi-directional): 

 Is independent of keyword query length

 User interaction: 

 Use path index to materialize QCOs and query interpretations 

incrementally by BF-k and DF-k

 Start expansion with the most probable QCOs

 Thresholds, time limits 
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[Demidova et. al 2013] 
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Discussion

 Interactive query construction can enable efficient and 

scalable query solutions for large scale data 

 It can involve ontologies to summarize and enrich database 

schema using abstract concepts (e.g. using YAGO ontology)

 Query interpretation space on large scale data can and 

should be materialized incrementally 
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