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Challenges in IR Evaluation
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 BigData
 Heterogeneity (larger annotation demand)

 Dynamicity (updates required)

 Novel tasks (no test collections)

• Relevance ranking

• Search result diversification

• Temporal retrieval

• etc.



Challenges in IR Evaluation
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 Better human accessibility
WiFi, Mobile Networks, Portable gadgets (larger crowd)

 Challenges:

How to motivate the crowd to work?

How to obtain meaningful results from the individuals?

How to aggregate the crowdsourced results?

How to evaluate the output?



Ouline
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• Collaborative Advantages
• The wisdom of  crowds

• Conditions for a successful collaboration

• Obtaining collaborative knowledge
• Crowd motivation

• Scalability/Efficiency

• Own work 

• Input/Output Evaluation

• Users and Data

• Quality assurance

• Discussion



Collaboration
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Often we need more than one hand

Also more than one brain

“Why the Many Are Smarter Than the Few and 

How Collective Wisdom Shapes Business, 

Economies, Societies and Nations”

James Suroewicki

.. The Wisdom of Crowds ..
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In 1906, the statistician Francis Galton observed a competition at a country fair. The 

crowd accurately guessed the weight of an ox when their individual guesses were 

averaged (the average was closer to the ox's true butchered weight than the 

estimates of most experienced crowd members)



Crowd IQ: aggregating opinions to boost performance
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Yoram Bachrach, Thore Graepel, Gjergji Kasneci, Michal Kosinski, Jurgen Van Gael: Crowd IQ: aggregating opinions to boost performance. 

AAMAS 2012



United Brains
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Expert

U
ti
lit

y

Masses

# of contributors10 10,000+

Equivalent, or greater, utility 
under the curve



4,000 experts
80,000 articles
200 years to develop
Annual Updates

>~100,000 amateurs
1.6 Million articles
5 years to develop
Real-Time Updates

United Brains
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(In,-) Direct Collaboration in IR can be used:

 Collaborative tagging, 

 Favorite assignments,

 Click logs,

 Data partitioning,

 Recomendations,

 ect., ect.,ect….
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Tags: Rainbow, Sea, Island, Green, Palm tree, Maui



Collaboration: Paradox

 Using „Wisdom of Crowds” is not always 
straight-forward to achieve.

Collaborative work needs to be managed 
efficiently

 Kasparov won against the world in 1999
http://en.wikipedia.org/wiki/Kasparov_versus_the_World
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ORACLE speedups. https://docs.oracle.com/cd/E19205-01/819-5265/bjael/index.html

#processors vs performance

http://en.wikipedia.org/wiki/Kasparov_versus_the_World


Collaboration: Success Criteria
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Criteria Description

Diversity of opinion Each person should have “private” information.

Independence People's opinions aren't determined by the opinions of those 

around them.

Decentralization People are able to specialize and draw on local knowledge.

Aggregation Effective mechanism exists for turning private judgments into 

a collective 



Groupthink Symptoms:
Irving Lester Janis (26 May 1918 - 15 November 1990)

• Collective rationalization 

• Self-censorship 
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• Direct pressure on dissenters 

• Self-appointed ‘mindguards’

https://www.youtube.com/watch?v=fuIXiXqv978



Collaboration

“The best collective decisions are the product of disagreement and contest, not 

consensus or compromise.”

“The best way for a group to be smart is for each person in it to think and act as 

independently as possible.”
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Ouline
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• Collaborative Advantages
• The Wisdom of Crowds

• Conditions for a successful collaboration

• Obtaining collaborative knowledge
• Crowd motivation

• Scalability/Efficiency

• Own work 

• Input/Output Evaluation
• Users and Data

• Quality assurance

• Discussion

Two different images that share the same labels:

man and woman



Machine Vs. Human
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Humans can (yet) solve some tasks 

more efficient and/or accurate 

as a machine would do.

• Captcha (OCR)

• Classification 

• Image tagging

• Speech recognition

• Face/emotion recognition



Declarative Crowdsourcing Systems
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J. Fan et al: CrowdOp: Query Optimization for Declarative Crowdsourcing Systems, TKDE, 2015.

Michael J. Franklin et al: CrowdDB: answering queries with crowdsourcing, SIGMOD 2011

A. Marcus et al: Human-powered Sorts and Joins, VLDB 2011

SELECT c.name

FROM celeb c JOIN photos p

ON samePerson(c.img,p.img)

TASK samePerson(f1, f2) TYPE EquiJoin:

SingluarName: "celebrity"

LeftPreview: "<img src=’%s’>",tuple1[f1]

RightPreview: "<img src=’%s’ >",tuple2[f2]

Combiner: MajorityVote

SELECT image i FROM serengety

ORDER BY CROWDORDER (i, "Which image 

contains more baby animals");
=

=



Gathering Input, Reusing “Natural” Human Power
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Human Computation Platforms and Motivation 
for Participation
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• Helping/Contribute to something important

• Social pressure

• Virtual goods

• Competitions

• Gaming

• Money

Paid Crowdsourcing

Citizen Science



Monetary based Motivation
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Human Intelligence Task (HIT)



Mturk: IR Example – Snippet Evaluation

 Study on summary lengths

 Determine preferred result length

 Asked workers to evaluate snippet quality

 Payment between $0.01 and $0.05 per HIT

 12,790 queries - 40K judgments 400$-2000$ (300h of work)

M. Kaisser, M. Hearst, and L. Lowe. “Improving Search Results Quality by Customizing Summary Lengths”, ACL/HLT, 2008.July 24, 2011 Crowdsourcing for Information 
Retrieval: Principles, Methods, and Applications 50
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IR Example – Relevance Assessment

 Replace TREC-like relevance assessors with MTurk?

 Selected topic “space program” (011)

 Modified original 4-page instructions from TREC

 Workers more accurate than original assessors!

 40% provided justification for each answer 

 Payment between $0.02 per HIT

 1 topic, 29 documents - 290 judgments (6$)

O. Alonso and S. Mizzaro. “Can we get rid of TREC assessors? Using Mechanical Turk for relevance assessment”, SIGIR Workshop on the Future of IR Evaluation, 2009. 
July 24, 2011 Crowdsourcing for Information Retrieval: Principles, Methods, and Applications 51
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Games

ESP Game: label images
 Image retrieval by text

Squigl: match the labels to areas
 Object recognition

Matchin: find the better image
 Image ranking

FlipIt: memory with similar images
 Near duplicate detection

• Other areas covered as well: label songs, find synonyms, describe videos

• See: www.gwap.com by Luis von Ahn
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Useful human power for annotating the Web

• 5000 people playing simultaneously could label all images on 

Google in 30 days!

• Individual games in Yahoo! and MSN average over 5,000 players at 

a time



Urbanopoly
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I. Celino et al., "Urbanopoly -- A Social and Location-Based Game with a Purpose to Crowdsource Your Urban Data," Privacy, Security, Risk and Trust (PASSAT), 2012 International 

Conference on and 2012 International Conference on Social Computing (SocialCom)



Competition based Motivation (Image Privacy)
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Gathering average community notion of privacy

 We crawled “most recently uploaded” Flickr photos (2 Months)

Started a social annotation game (over the course of 2 weeks)

81 users (colleagues, social networks , forum users) , 6 teams

Collected around 30K annotated photos
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Sergej Zerr , Stefan Siersdorfer , Jonathon Hare , Elena Demidova  Privacy-Aware Image Classification and Search , SIGIR‘12



The GUI for Privacy Aware Image IR
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Motivation: Add Social Pressure
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Oluwaseyi Feyisetan, Elena Simperl: Please Stay vs Let's Play: Social Pressure Incentives in Paid Collaborative Crowdsourcing. ICWE 2016



Combine Gamification, Competition and Money

 Problem: improve time aware cost effectiveness of crowdsourcing
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Individual 

reward 

mechanisms

Competitive game designs for 

improving the cost 

effectiveness of 

crowdsourcing

CIKM’14

Team-based reward 

mechanisms

Groupsourcing: Team 

competition designs for 

crowdsourcing

WWW’15

Temporal-based 

crowdsourcing 

performance

Just in Time: Controlling 

Temporal Performance in 

Crowdsourcing Competitions

WWW’16



Reward Distribution 1: “Pay-per-Task” (Baseline)

Reward Distribution 1: “Pay-per-Task” (Baseline)
 Fixed reward rate c ($ per task) for each worker

 Reward of workers proportional to value produced by worker (e.g. no. of annotations, ratings, etc.)
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M. Rokicki, S. Chelaru, S. Zerr, and S. Siersdorfer. Competitive game designs for improving the cost effectiveness of crowdsourcing. CIKM’14



Reward Distribution 2: Competitions

 Workers compete during limited time period

 Workers obtain scores based on their performance (e.g. no. of tasks fulfilled)

 Ranking of the workers based on their performance

 Distributing of the rewards according to the rank
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Workers’ View: Tasks
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Information Policies

 How much information about fellow workers to provide during competition?

 Information: scores, rank
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Performance of Strategies (Captcha Task)
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Competition among Top-10 Workers
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Team-based reward mechanisms
Can we use work groups to further improve the performance?

M. Rokicki, S. Zerr, and S. Siersdorfer. Groupsourcing: Team competition designs for crowdsourcing. WWW’15

WWW 2015

monetary incentives

competitions

individuals teams
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 Rewards:
 Non-linear distribution among teams

 Individual share proportional to contribution

Communication:
 Team chats with notifications

Combinations with individual reward
 balanceTS

 ind-balanceTS
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Performance of the Strategies
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Results: Team Contributions
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Workers Interaction

Communication in team chats

 2,500 messages by over 200 participants

Encouragement

Help and clarification of rules

Discussing strategy

Democratic team administration

Discussing our strategies
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Lets go team !!! we are 5, team A are 3. 

We can reach them !!!

user 1

What if I answer wrong?

user 2

we will lose 20 points :)

[...] this system.. its stable and 

perfect.. all in our hands(public) but 

not of system automatically selecting 

arranging them in teams..

user 1

Im trying to get to number 5 spot because he/she 

stopped clicking.

user 2

Yeah but u need 2000 thousand more buddy, 

and you know that he/she will be careful now :/ 

she will check again to see if you will attack and 

then he/she will start doing more [...]

user 1

good point



Temporal-based crowdsourcing performance
Can we control the crowd to annotate at right times?

M. Rokicki, S. Zerr, and S. Siersdorfer. Just in Time: Controlling Temporal Performance in Crowdsourcing Competitions. WWW’15

WWW 2016 (to appear)
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Peak vs NonPeak
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Number of correct annotations per minute around a 
typical bonus hour.
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Annotation dynamics
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Workers Interaction

Communication in team chats

 3,400 messages by over 200 participants
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Bonus coming 14 minutes from now. 

prepare everyone, we must try that first 

place :D

our rank fall from rank 4-5 to 12 bcoz

the other team work on time of bonus

as soon as they announce the time

of the next bonus I will email you



Contributions
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Medium Information policy 

and exponential rewards 

significantly increase crowd 

performance by 300%

47

Balanced teams + 

individual rewards further 

increase performance and 

make the work more 

attractive (+30%)

Framework using our

strategies additionally

increased output in peak

times by more than 300%

Individual reward 

mechanisms

Competitive game designs for 

improving the cost 

effectiveness of crowdsourcing

CIKM’14

Team-based reward 

mechanisms

Groupsourcing: Team 

competition designs for 

crowdsourcing

WWW’15

Temporal-based 

crowdsourcing performance

Just in Time: Controlling Temporal 

Performance in Crowdsourcing 

Competitions

WWW’16



Motivation: Contribute to Science (“Zooniverse”)
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https://www.zooniverse.org/



Motivation: Contribute to Science (“Cities at Night”)

 Classification of night photos from ISS to estimate artificial light pollution in cities

 Observe temporal development, measure impact on citizens and biosphere
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http://stars4all.eu

http://www.citiesatnight.org/

http://stars4all.eu/


Motivation: Contribute to Science (“Cities at Night”)

 Task 1: “Dark skies” – Find night cities in a photo stream (over 100K annotated)

Task 2: “Lost at night” – identify the city on the photograph (around 500 identified) 

Task 3: “Night cities” – position, rotate and scale the image to the map.
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Combine Human and Machine Input

 Assign DBPedia 
class to entities

Baby food, 
Petroleum industry in 
Nigeria, Light infantry

"Region", "Locality„ 
"Settlement"
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Using microtasks to crowdsource Dbpedia entity classification: A study in workflow Design. Qiong Bu, Elena Simperl, Sergej Zerr and Yunjia Li



Combine Human and Machine Input
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Output Aggregation

 Statistical models
Majority voting

 Graphical models

 Optimization models
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Ouline
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• Collaborative Advantages
• The Wisdom of Crowds

• Conditions for a successful collaboration

• Obtaining collaborative knowledge
• Gathering Data from Social Web / Mechanical Turk

• From Data to knowledge (Applications)

• Own work 

• Input/Output Evaluation
• Users and Data

• Quality assurance

• Discussion



Asking questions

 Ask / formulate the right questions 

 Part art, part science 

 Instructions are key

 Workers may not be IR experts (don’t assume the same understanding in terms of terminology)

 Show examples
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N. Bradburn, S. Sudman, and B. Wansink. Asking Questions: The Definitive Guide to Questionnaire Design, Jossey-Bass, 2004



Quality: Ambiguity and Subjectivity
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Nederland, netherlands, holland, dutch

Rotterdam, wielrennen, cycling, duck

le grand depart, tour de france, 

Reklame, caravan, Funny Fotos

What is relevant?

„Alice saw Bob 

with the binoculars“



Quality: Data from Social Web

 Simple random sample can result in a set dominated by few power user
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Demographic Bias (Zooniverse)
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Project

preferences

Working 

sessions

S. Zerr, R. Tinati, M. Luczak-Roesch, and E. Simperl: Investigating the Global Adoption of Citizen 

Science. Collective Intelligence 2016



Rater Reliability “Where is the cat?”
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Quality Assurance

 Qualification Tests

 Test questions

 „Static“ Honeypots

 „Dynamic“ honeypots

 Workers‘ reputation mechaisms

 Inter-rater agreement
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Test Questions
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Matthew Lease and Omar Alonso: http://de.slideshare.net/mattlease/crowdsourcing-for-search-evaluation-and-socialalgorithmic-search

Throw the coin and tell us the result

• Head

• Tail

Results

• Head 61

• Tail 39

People often tend 

just to select the 

first option 

Better: Some preliminary textual answer

• Coin type?

• Head or tail.



 Static honeypots
Let the workers perform the task. Reject the results with honeypot errors

 Dynamic batches with injected honeypots
Only reject the low quality batches

Honeypots
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b1

b2



Measure the Inter–Rater Reliability
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1 0

1 0

1 1

A
total

Yes No

B Yes 2 1 3

No 2 1 3

total 4 2 6

Naive approach: 3 cases out of 6 = 0.5 agreement

Kilem L. Gwet, Handbook of inter-rater reliability 2010 

A B



Statistic Significance
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First experiment:

Throw the dices with the right hand

10 times.

Compute the average

3.7

Second experiment:

Throw the dices with the left hand

10 times.

Compute the average

4.4

Claim that the left hand is better…..



Inter–Rater Reliability: Cohen’s Kappa(1960)

 Idea: We need to remove agreement achieved just by chance
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Inter–Rater Reliability: Missing Values

 Idea: Use partial ratings to estimate the marginal probability only
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Inter–Rater Reliability: Extensions

 Multiple Raters/Categories: 

 Fleiss 1971 – Average over random pairs of raters for random objects

 Adjustment for Ordinal and Interval Data, Weighting: 

weight judgments using distances between categories.

 Measures: AC1, AC2(ordinal and interval data)

 Check for statistical significance: 

 The number of categories and/or raters matters.
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Kilem L Gwet: andbook of Inter-Rater Reliability: The Definitive Guide to Measuring the Extent of Agreement Among Raters, 2014



Inter–Rater Reliability: Kappa Interpretations
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Koch

Kappa Strenght of Agreement

<0.0 Poor

0.0 – 0.20 Slight

0.21 - 0.40 Fair

0.41 - 0.60 Moderate

0.61 - 0.80 Substantual

0.81 - 100 Almost Perfect

Fleiss

Kappa Strenght of Agreement

0.0-0.40 Poor

0.41 – 0.75 Intermediate to Good

>0.75 Excellent

Altman

Kappa Strenght of Agreement

<0.20 Poor

0.21 - 0.40 Fair

0.41 - 0.60 Moderate

0.61 - 0.80 Good

0.81 - 100 Very Good

Please note: These interpretations were proven to be usefull mostly in medical domain (diagnosis)



Summary

 Wisdom of the Crowd: Collective Intelligence and Groupthinking

 Obtaining Collaborative Knowledge: Motivation in Paid Crowdsourcing and Citizen 
Science

 Result Aggregation and Quality Assurance
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Discussions / Questions / Remarks



Ouline
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• Collaborative Advantages
• The Wisdom of Crowds

• Conditions for a successful collaboration

• Small experiment
• Can we collaborate?

• Obtaining collaborative knowledge
• Crowd motivation

• Scalability/Efficiency

• Own work 

• Input/Output Evaluation

• Users and Data

• Quality assurance

• Discussion



Results of the Experiment:

24.07.2016 2nd Keystone Training School, Sergej Zerr 72

Baby Elephant: http://www.zimbio.com/pictures/zrf_WCjHyqn/Baby+Elephant+Born+Munich+Zoo/H_xQAzpvSP9

 The real weight of the 
Babyphant: 112 KG

Average of the 38 
estimates: 113,32 KG

Max/Min guesses: 300/2 

The graph shows the single 
estimations as blue points, the 
average after each estimate as the 
grey dotted line and the real value as 
the orange line.
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