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MACHINE LEARNING

INTELLIGENT

3

SYSTEMS

“Machine learning is the

science and art of algorithms
that make sense of data.”

Peter Flach, 2012

“Machine learning is the science of

getting computers to act without being
explicitly programmed.”

Andrew Ng, 2013
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algorithm
£
domain expert = programmer
ALGORITHM shortest-path(Vv,T)
W := {vl}
ShortDist[v1l] :=0
FOR each u in V - {vl1}
ShortDist[u] := T[vl,u]
WHILE W /= V
MinDist := INFINITE
FOR each v in V - W
IF ShortDist[v] < MinDist
MinDist = ShortDist[Vv]
w = Vv
END {if}
END {for}
W := W U {w}
FOR each u in V - W
ShortDist[u] := Min (ShorDis[u],ShortDist[w] + T[w,ul)
END {while}
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algorithm

domain expert = programmer

Requires a comprehensive understanding and adequate formalization,
not only of the problem, but also of the solution process.
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GAME PLAYING ROBOT SOCCER
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19 September 2013

The End of Driving?

A chorus of carmakers has declared that they expect autonomous cars to reach
commercial viability by 2020. Computer systems and sensors that handle
parking, braking, and to a limited degree, steering are already giving us a
glimpse of a future in which machines not only drive unassisted but do so better
than any human can. Now Tesla Motors, maker of the eponymous electric
luxury sports car that debuted to rave reviews, has upped the ante. Tesla's
CEO, Elon Musk, says that within the next three years, his company aims to
produce systems capable of safely taking the helm for 90 percent of miles
driven.

IMAGE RECOGNITION AUTONOMOUS CARS
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Human skills are not always easy to explain!

MALE
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FEMALE
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IMPLICIT SKILLS
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Human skills are not always easy to explain!

For example, a reduction
of the search space does
not immediately imply
better solutions.

Eine Beschrankung des
Suchraums fihrt beispielsweise
nicht unmittelbar zu besseren
Losungen.
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How to teach a robot
to swing?
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LEARNING FROM DATA i

Instead of providing a complete and consistent description of domain
knowledge, it is easier to ...

— give examples and let — let the system explore — demonstrate and let the
the system generalize and provide feedback system imitate

MALE

—> supervised learning —> reinforcement learning —> imitation learning
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DATA
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— correctness
— complexity (time, space)

computer scientist

— correctness (?)
— complexity (time, space)
data scientist — sample complexity

11
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Probably Approximately Correct (PAC) learning:
Efficiently finding a hypothesis that is ,good” with high probability!

e-close to the target
with probability > 1 — ¢

HYPOTHESIS SPACE ‘H

12



SUPERVISED LEARNING .
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Machine learning is an option whenever explicitly designing an algorithm
by hand appears intricate, while data is available that provides, in one way
or the other, useful hints at what the sought functionality may look like.

CBERN yE{O,l}

For example, a reduction
of the search space does
not immediately imply

better solutions.

neural networks
kernel machines
decision trees

The ability to generalize (beyond training data) as a major theme ...

13
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banking and finance (stock prediction,
fraud detection, ...)

busmess (CRM response smart environments
prediction, ...)

Internet (information retrieval, email e
classification, personalization, ...) technical systems (diagnosis,
control, monitoring, ...)
Google == e= &=

The End of Driving?

orus of carmakers has declared that the, yexpecl t 0 reach
Vi

glimpse of a future in which machines not onl
than any human can. Now Tesla Motors ker of the eponyr
luxury sports car that debuted to ray , has upped the ante.

CEO, Elon Musk, says that within e next three years, his company aims to
produce systems capable of safely taking the heim for 90 percent of miles
driven.

biometrics (person
identification, ...)

autonmous driving

medicine (diagnosis,
prosthetics, ...)
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bioinformatics,

media (speech/image genomic data anaIyS|s

recognition, video mining, ...)

games (e.g. soccer, go, ...)
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ANALYTIC VERSUS SYNTHETIC ML i
INTELLIGENT

ANALYTIC VIEW

Polizei-Software zur Vorhersage von Verbrechen
Gesucht: Einbrecher der Zukunft

—.mazon ﬁl patent fo
“anticipatory” shipping
i P

—> analyze and help understand
a phenomenon that exists in
the real world

SYSTEMS

SYNTHETIC VIEW
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—> support the design/engineering
of a system with certain
desirable properties
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OUTLINE
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(D) Prelude

(2 Machine learning 101

(3) Potential contributions of fuzzy logic
(4) Fuzzy pattern trees

(5) Learning from fuzzy data

17



TAXONOMY OF ML PROBLEMS
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ML problems
| |
unsupervised reinforcement supervised active and weakly
learning supervised
11
11 11
regression classification structured
outputs
11
[T 1
online batch streams
11 11
binary hierarchical multi-class multi-target

18



ML PARADIGMS AND METHODOLOGIES i
INTELLIGENT

Learning Paradigms

— Active learning
and experiment design
— Cost-sensitive learning
— Inverse reinforcement learning
— Meta learning
— Multi-task learning
— Online learning
— Reinforcement learning
— Semi-supervised learning
— Transductive learning
— Structured output prediction
— Transfer learning

SYSTEMS

Machine Learning Methodologies

— Deep learning
— Gaussian processes
— Graphical models
and Bayesian networks
— Inductive logic programming
— Kernel-based methods
and support vector machines
— Latent variable and topic models
— Markov networks
— Preference learning and ranking
— Relational learning
— Rule and decision tree learning
— Sparsity and compressed sensing

19
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Supervised learning:

Learner is provided with explicit examples of how to act in certain situations,
i.e., what outputs the target model is supposed to produce for specific inputs.
Thus, the training data can be seen as examples of “correct solutions” (albeit
mistakes are tolerated) that are made available by an external teacher.

Reinforcement learning:

Although feedback is provided to the learner, it is typically of an indirect nature
and may come with a temporal delay. Acommon example is game playing,
where the goal is to learn a policy that maps states (of the game) to optimal
actions.

Unsupervised learning:

The learner merely observes the data (for example, handwritten digits), but
without any type of supervision. The main goal in unsupervised learning is to
discover structure in the data, for example represented as a grouping of data

into clusters.
20
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EMAIL

Von Heike Wehrheim i * 4 Antworten | E®L |~ | = weiterleiten &3 Archivieren € Junk | ( Léschen  Mehr~
Betret [sfb01-tpb2] Nichstes QT-Treffen 151122016, 16:15
An fists.upb.det, b
Liebes QT!

Im neuen Jahr sollten wir uns in unserem QT mal wieder treffen. Als Thema fiir das Treffen sehe ich
- Kooperationen im QT und
- Quo vadis "ML als Case Study"

SPAM or
Not SPAM

Weitere Themenvorschlige nehme ich gerne entgegen. a’:
Hier ein Doodle zur Terminfindung http:/ /doodle.com /poll pukqkwaseyzmadzg

Viele GriiRe und schéne Weihnachten
Heike

57D901-tpb2 mailing Uist
57b901-tpb26lists. uni-paderborn.de
https://1ists. uni-paderborn. de/mai lnan/Listinfo/sh901-tpb2
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Coupled Generative Adversarial Networks
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3:13 y {01, ..., 9}
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Optimal Sample Complexity of M-wise Data for Top-K Ranking

Algorithm 1 Rank Centrality (Negahban et al., 2012)
Input the collection of statistics s = {sz : Z € £A0}.
Convert the M-wise sample for each hyper-edge Z into
M pairwise samples:

1. Choose a circular permutation of the items in Z uni-
formly at random,

2. Break it into the M pairs of adjacent items, and de-
note the set of pairs by ¢(Z).

3. Use the (pairwise) data of the pairs in ¢(Z).

Compute the transition matrix P = [P]1<j<n:

) e CN L2
Py={ 1=, By ifi=ji
0 otherwise,

Where dy is the maximum out-degree of vertices in £.
Output the stationary distribution of matrix P.

Y = 16)

Tiledl)

In an ideal scenario where we obtain an infinite number of
samples per M-wise comparison, ie., L — oo, sufficient
statisties -3, v}y converge to 24— as the PL model
is a natural generalized version of the BTL model. Then,
the constructed matrix P defined in Algorithm 1 becomes
amatrix P whose entries [P;;]1<; j <y, are defined as

a M),
T L)) vy rL € £
Py=9 1=y P ifi = j;
) otherwise.

an

The entries for observed item pairs represent the relative
likelihood of item i being preferred over item j. Intuitively,
random walks of P in the long run visit some states more
often, if they have been preferred over other frequently-
visited states and/or preferred over many other states.

The random walks are reversible as w; Pj; = w; P,; holds,
and irreducible under the connectivity assumption. Once
we obtain the unique stationary distribution, it is equal to
w = {wy,...,w,} up to some constant scaling.

It is clear that random walks of P, a noisy version of
P, will give us an approximation of w. The algorithm
et al., 2013) directly follows the ordering evaluated in each sam-
© <M —1 < M, itis broken into pairs
2upto M — 1 < M. Our method turns

prlsasil — 21 (see (17)), whereas the

=] =

is ot (Azari Soufiani et al., 2013).

adopts a power method, known to be computationally effi-
cient in obtaining the leading eigenvalue of a sparse matrix
(Meirovitch, 1997), to obtain the stationary distribution.
3.2. Proof outline

To outline the proof of Theorem 2, let us introduce Theo-
rem 3. We show that Theorem 3 leads to Theorem 2.

Theorem 3. When Rank Centrality is employed, with
high probability, the £, norm estimation error is upper-

bounded by
lio ~wl,,  [nlogn [T
% <\ 7 =, (18)
lwllee (ip)pLV M

where p > ¢)(M — 1), (‘_:j and c, is some numerical
VG

constant.

Let |[w]|e = Wmex = 1 for ease of demonstration. Sup-

—uk—w Cogn /3
pose A = wk —wk+1 2 [ P55/ 47 Then.
g — iy > wg — wy — iy — wil — iy — wy|

> wk —wi 1 =2 —w[e >0, (19

forall 1 <i < K andj > K + 1. That is, the top-K
items are identified as desired. Hence, as long as Ak >

V VA ies (pL 2 "5 gy, reliable top-K
ranking is achieved with the sample size of ﬁf"g‘:" -

Now, let us prove Theorem 3. To find an £ error bound,
we first derive an upper bound on the point-wise error be-
tween the score estimate of item i and its true score, which
consists of three terms:

i — wil < Jibs = wi| P+ Y iy — wy| Py

Jiit

+ (20)

3 (it w) (Pu—Py)|-

tE

This can be obtained applying @ = Pib and w = Pw.
‘We obtain upper bounds on these three terms as follows.

Py<1, @n

N nlogn [T
E(mwﬂ(a‘ )| 2\ e @
) . nlogn [ 1
3 s —wil Py 54 eV @

s

with high probability (see Lemmas 1, 2 and 3 in the supple-
mentary for details). One can see that the inequalities (21)

SYSTEMS

Abstract

Given a sample of instances with binary labels,
the top ranking problem is to produce a ranked
list of instances where the head of the list is domi-
nated by positives. Popular existing approaches to
this problem are based on surrogates to a perfor-
mance measure known as the fraction of positives
of the top (PTop). In this paper, we show that
the measure and its surrogates have an undesir-
able property: for certain noisy distributions, it is
optimal to trivially predict the same score for all
instances. We propose a simple rectification of
the measure which avoids such trivial solutions,
while still focussing on the head of the ranked list
and being as easy to optimise.

24
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Given a set of (i.i.d.) training data

D = {(331,?/1)7---7(5’5.7\1,%\7)} C X x)Y

and a hypothesis space H C Y, find a model with low risk

R = [ Lh().u) dP@.y)

]

loss function data generating
process

Other criteria might be important, too ...

25



LINEAR MODELS

H={h:z— [z'w>0] |lweR"}

~_ J O ify=y
L(yay)_ 1 |fy7é:&

_ P

§.~

set of
linear models

HYPOTHESIS SPACE ‘H

INTELLIGENT

SYSTEMS
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STRUCTURED DATA
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& > { active, non-active }

graph (molecule) _ class

SYSTEMS
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(Mary takes the bus)  ———> /\

Mary takes the bus

sequence — tree
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FEATURE ENGINEERING
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Many ML algorithms operate in Euclidean spaces ...

EMAIL

Helke Wehrheim <wehrheim@upb.des# | 4 Antworten | Liste antworten |~ | | = Weiterlaiten || £ Archivieren || @ Junk | Loschen | Mehr~
Setrert [sb901-tpb2] Néchstes QT-Treffen 15/12/2016, 16:1%
1. .
Liebes QT!

Im neuen Jahr sollten wir uns in unserem QT mal wieder treffen. Als Thema fir das Treffen sehe ich
- Kooperationen im QT und
- Quo vadis "ML als Case Study”

Weitere Themenvorschlage nehme ich gerne entgegen.

Hier ein Doodle zur T http://doodle.com/pol

Viele GriRe und schone Weihnachten
Heike

5Tb901-tpb2 mailing List
5fb901-tpb2@lists. uni-paderborn, de
https://lists.uni-paderborn, de/nailnan/listinfo/sfb901-tpb2

r—=\r1,r2,...,4(d
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Data entities represented as feature vectors:

A
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Data entities represented as feature vectors:

N
SPAM
NO
SPAM
OOO
(0]
G0 ®
%0%8 (@)
O @
(@)
(o)
Oo o
(0]
>
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Given a set of (i.i.d.) training data

D = {(wl,yl)a---a(wN,yN)} CAXx)Y

and a hypothesis space H C Y%, find a model with low empirical risk

Remp(h) = = S 0(h(:), :)

1=1

N
1
h* € In — C(h(x;),y;) -
au;g;ergliurlNZE:1 ( (513) y)

In general, ERM won’t work very well ...

32
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OUTPUT

INPUT
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CHOICE OF THE MODEL SPACE h
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OUTPUT
a
a

INPUT
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OUTPUT
a

INPUT
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OUTPUT

INPUT
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OUTPUT

INPUT
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overfitting and
underfitting leads to
poor generalization §

OUTPUT

INPUT
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KNOWLEDGE AND DATA i
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expected loss

SYSTEMS

learning curve for a flexible model class
(such as deep neural networks)

learning curve for a simple model class

sample size
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REGULARIZATION h
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Given a set of (i.i.d.) training data

D= {(@1,91), s (@x,yw) | CX XY

and a hypothesis space H C Y, find a model minimizing

Rrca(h) = - 30 L(h(@:), 1) + A(R),

1=1 T

for example regularizer

N
1
Rreg(h) = = D (w'@i —y:)" + Alfwll2-
=1

40



GRADIENT DESCENT h
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Consider hypotheses h,,(-) parameterized by w € RY, such as
hw(®)=w' o .

Gradient descent:
| N
Wil & Wt = Z; Voo £(haw, (), ys)
Stochastic gradient descent:

1
Wi41 < Wy — 7 va E(hwt(wt)a yt)

for randomly chosen (x4, y¢).

41
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SURROGATE AND MARGIN LOSSES i
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Let YV = {—1,+1} and consider a class of scoring classifiers h : X — R.

A margin loss is a function of the form

((y,s) = flys) .

where f : R — R is a non-increasing function.

3
0/1 loss

250
|

1.5¢
1

%
42



DECISION TREES h
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Decision trees define a classification
function through recursive
partitioning of the instance space.

> O

R G B bo
15 20 25 =
/\ ﬂ ;?_
OG0 G 47

12 21
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DECISION TREES h
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Decision trees define a classification
function through recursive
partitioning of the instance space.

> O

high entropy = q]

R G B bo

15 20 25 = |
/\ : |--J:'L
1 B

OOo oo @ [0 o,

3
14 18 25 )A

high entropy low entropy



DECISION TREES h
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A
< ag > ap Decision trees define a classification
function through recursive
B BLUE partitioning of the instance space.
< M bo
GREEN RED B
A
|
—
l,l.j
>A
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Performing well on the training data does not mean you will
generalize well to new data!

*= |n many cases, model induction eventually comes down to
solving an optimization problem.

= While solving this problem is an important (algorithmic) part of ML,
the true challenge is to specify the right problem, i.e., the

objective function to the optimized!

» Besides, incorporating the available domain knowledge is often
key to success!

46
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CELL
GROWTH
A 1
B
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CELL

GROWTH
A

100 +

| | 1 | |
| 1 1 | > TEMP
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CELL

GROWTH
A

100 +

| | - | } > TEMP
10 20 30 40
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overfitting and

CELL underfitting leads to
GROWTH poor generalization
A
100 4+
10 4+

1
1
I i ) | i > TEMP

Learning = updating prior knowledge against the background of observed data
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CELL
GROWTH
A -
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’l,l ) S
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Data compensates for lack of knowledge ...
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CELL

GROWTH
A

100 |+

10 +

| | | } > TEMP
10 20 30 40

Data compensates for lack of knowledge ...
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THEORETICAL CHALLENGES h
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e What hypothesis space 7/ to work with? What suggorate loss
should be minimized, given a specific target loss?

e How to bound generalization performance R(h) based on

empirical performance Remp(h) and sample size N7

P(|R(h) — Remp(h)| > €) < Q(VC(H), N, ¢)

e How does the induced model A compare to the Bayes-optimal
predictor

h*™ . x+— arg min/é(y,Q)P(y\w)dy :
gey

which, for each & € X, predicts the expected loss minimizer?
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LEARNING FROM DATA h

INTELLIGENT
I SYSTEMS
induction  learning mathematical ... used for
principle  algorithm  structure " prediction
= adaptation, control
\l, = explanation

systems analysis

data/observations —> INDUCTION hypothesis

A

Problem of induction: adapting a suitable representation so as to fit
observed data and generalize well to new data.

o7



OUTLINE
h INTELLIGENT

L] SYSTEMS

(D) Prelude

(2) Machine learning 101

(3@ Potential contributions of fuzzy logic
(4) Fuzzy pattern trees

(5) Learning from fuzzy data
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DEDUCTIVE VS INDUCTIVE REASONING h
INTELLIGENT

L] SYSTEMS

In its major application fields (approximate reasoning, control, decision making,
querying, retrieval and information systems, ...), fuzzy logic has primarily been
used as a tool for knowledge representation and information processing.

PREMISES (fuzzy) logical deduction CONCLUSIONS
MODELS > OBSERVATIONS
ASSUMPTIONS DATA
T (statistical) induction
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KNOWLEDGE-BASED MODELING

b

symbolic representation

formalization

fuzzy logic as a human-
machine interface

inference

e

IF ... THEN ...

IF ... THEN ...

IF ... THEN ...

IF ... THEN ...

IF ... THEN ...

IF ... THEN ...
precisiation

INTELLIGENT

SYSTEMS
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FUZZY RULES

IF
IF
IF
IF
IF
IF

temp
temp
temp
temp
temp
temp

is
is
is
is
is

is

temp = 80,

low
low
low
high
high
high

time

AND
AND
AND
AND
AND
AND

= 120, yield = ?2?

time

time
time
time
time

time

is
is
is
is
is

is

low
med
high
low
med
high

THEN
THEN
THEN
THEN
THEN
THEN

yield
yield
yield
yield
yield
yield

is
is
is
is
is

is

b

color yield

low
low
med
med
med
high

INTELLIGENT

SYSTEMS
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DATA-DRIVEN MODELING

INTELLIGENT

3

numerical representation

SYSTEMS

preprocessing mac
—_—> \OEEamez \

induction

inference

e
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DATA-DRIVEN FUZZY MODELING

b

numeric representation

preprocessing

-

ﬁarnu;g N

®
%

machine,.

v 4
0w 8
b S

Any benefits of learning
a fuzzy model?

inference

e

induction

INTELLIGENT

SYSTEMS
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FUZZY MACHINE LEARNING h
INTELLIGENT

L] SYSTEMS

Fuzzy
Machine
Learning

Machine Fuzzy Logic

Fuzzy Systems

Learning

= Extending machine learning through concepts, tools, and techniques
from fuzzy logic and fuzzy systems modeling.

» Enhancing fuzzy systems modeling through data-driven approaches.
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MAJOR TOPICS h

INTELLIGENT
L] SYSTEMS

Fuzzification of models

Fuzzy extension of standard, non-fuzzy models and methods (blurring the
distinction between symbolic and numeric methods, logic-based and
arithmetic expressions, discrete and continuous models).

For example, fuzzy rule induction, fuzzy decisions trees, fuzzy nearest
neighbor estimation, fuzzy support vector machines, etc.

Extension of the representation of corresponding models by means of
fuzzy concepts, e.g., fuzzy instead of crisp partitions in decision tree
learning.
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INTELLIGENT

FUZZY SPLITS IN DECISION TREES i

SYSTEMS

0.6

> U

0.4 0.6

(x4, Ys) (x4, y:)
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MAJOR TOPICS h INTELLIGENT

L] SYSTEMS

Fuzzification of models

» Fuzzy extension of standard, non-fuzzy models and methods (blurring the
distinction between symbolic and numeric methods, logic-based and
arithmetic expressions, discrete and continuous models).

» For example, fuzzy rule induction, fuzzy decisions trees, fuzzy nearest
neighbor estimation, fuzzy support vector machines, etc.

= Extension of the representation of corresponding models by means of
fuzzy concepts, e.g., fuzzy instead of crisp partitions in decision tree
learning.

» Often leads to increased flexibility of the model class (e.g., hon-axis-
parallel boundaries in rule models), which may or may not be an
advantage with regard to generalization performance.

= Typically accompanied by an increased computational complexity.

= Link to fuzzy sets and fuzzy logic often not obvious. .



MAJOR TOPICS h

INTELLIGENT
L] SYSTEMS

Interpretability

Exploiting the usefulness of fuzzy logic in constructing interpretable
models (= linguistic modeling).

Often taken for granted, without providing a real “proof” of interpretability.

Are logical structures (necessarily) less interpretable than analytical
expressions and "formulas™?

Transparency is compromised by the size of (accurate) models (e.g.,
number and length of rules), complex interaction and inference.

Transparency/accuracy compromise.
Are fuzzy sets constructed in a data-driven way semantically meaningful?
Knowledge-based versus data-driven construction of fuzzy models

(human changes role from “producer” to “consumer”).
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MAJOR TOPICS h INTELLIGENT

L] SYSTEMS

Uncertainty

» Learning from data is inseparably connected with uncertainty.

= One may argue that probability alone is not enough to capture all relevant
sorts of uncertainty.

» Generalized uncertainty formalisms (typically based on non-additive
measures), such as possibility theory, may therefore be useful.

= Distinction between aleatoric and epistemic uncertainty.

= Representing uncertain data (ontic or epistemic).
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FURTHER POTENTIAL h
INTELLIGENT

L] SYSTEMS

» Fuzzy modeling beyond expressing functional dependencies.

= For example, formalization of the learning problem (e.g., loss functions),
mathematical structure of data spaces (e.g., state space abstraction in
reinforcement learning), feature modeling, etc.

= Well-studied (fuzzy) concepts such as aggregation functions and fuzzy
relations allow for specifying key notions, such as fuzzy order relations
and generalized transitivity.

= Many ways for incorporating prior knowledge in the learning process (e.g.,
specifying structure of a rule-based system, learning parameters).

» Non-inductive inference, such as (similarity-based or analogical)
knowledge transfer in transfer and multi-task learning.
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FUZZY FEATURE MODELING i
INTELLIGENT

healthy

SYSTEMS

shapes of cells
round oval pear caudate kite

pathological

D

L0

B
—“F
\"'

Hudchinson-
Gilford syndrome

[Thibault et al. Cells nuclei classification using shape and texture indexes. WSCG 2008.]
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FUZZY FEATURE MODELING h

INTELLIGENT
I SYSTEMS
y = a+ frx1+ Bojxat+ ...+ BT
The expert only needs to know THAT but not meaningful
HOW the features influence the output! high-level feature
(e.g., roundness)
Reduces
linguistic modeling ____, FUZZY FEATURE dimensionality
fuzzy inference ENGINEERING and increases
interpretability!
low-level feature 23 29 Z3 24 Zd
(e.g., pixel) i
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FUZZY FEATURE MODELING

h

INTELLIGENT
SYSTEMS

Use of gradual (instead of binary) features can increase discriminative power!

1
©
2 homo- not homo-
2 geneous geneous
=
'qEJ round ® O o
(@]
& not round '®) ® O
2

0

0 roundness (shape) 1
separable non-separable
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FUZZY MODELING IN MACHINE LEARNING h

INTELLIGENT

I SYSTEMS
THERE IS A NEED
FOR MODELING !
v
Yy = h($17$27 S 7$m)
T T feature modeling
data and output specification of the and selection
modeling model space (with

the right capacity)
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OUTLINE
h INTELLIGENT

L] SYSTEMS

(D) Prelude

(2) Machine learning 101

(3) Potential contributions of fuzzy logic
(@) Fuzzy pattern trees

(5) Learning from fuzzy data
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RULE-BASED METHODS

b

Fuzzy rule models are universal approximators, but ...

—
o

D~ W, O
T

o & n
@0
$e°
o

0

76
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RULE-BASED METHODS

INTELLIGENT

SYSTEMS

Fuzzy rule models are universal approximators, but ...

Flexibility of
fuzzy models
requires many
rules!

7



INTELLIGENT

PROBLEMS OF RULE-BASED METHODS i

SYSTEMS

Fuzzy rule models are universal approximators, but ...

10 — . —
1ﬁ'1ﬁ?+'+1'1F T

o ¥+ ¥ +

1 + 4 + + H

sh+T I *

++ it g Pt . ]

7 o T I METE T o ot 3

ORI R awnien

Poag ©° o & 4f% pirt, Flexibility of
2 o P o fuzzy models
4 P2 bl % : requires many

‘ rules!

3

2F

1k

I'.

0
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RULE-BASED METHODS h
INTELLIGENT

L] SYSTEMS

FUZZY RULE SYSTEMS FUZZY PATTERN TREES

= flat structure = hierarchical structure

» Jocal model components = global model components
» restricted (logical) combination = flexible aggregation functions



FUZZY PATTERN TREES h
INTELLIGENT

L] SYSTEMS

» FPTis a type of fuzzy model that was independently introduced in
— Z. Huang, TD. Gedeon, and M. Nikravesh. Pattern trees induction: A new
machine learning approach. IEEE TFS 16(4), 2008.

— VY.Yi, T. Fober and E.H. Fuzzy Operator Trees for Modeling Rating Functions.
Int. J. Comp. Intell. and Appl. 8(1), 2009.

= |t has recently been further developed in
— R. Senge and E.H. Pattern Trees for Regression and Fuzzy Systems Modeling.
Proc. WCCI-2010, Barcelona, Spain, 2010.

— R. Senge and E.H. Top-Down Induction of Fuzzy Pattern Trees. IEEE TFS,
19(2), 2011.

— R. Senge and E.H. Fast Fuzzy Pattern Tree Learning for Classification. IEEE
TFS, 23(6), 2015.



SIMPLE QUALITY CONTROL

all right

INTELLIGENT

b

‘ T

all right all right

all right

measurements

SYSTEMS



INTELLIGENT

SIMPLE QUALITY CONTROL i

SYSTEMS

not all right

all right not all right all right

measurements
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INTELLIGENT

SIMPLE QUALITY CONTROL i

SYSTEMS

[ I I ) b.aS!C
criterion

basic

criterion
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INTELLIGENT

DRAWBACKS OF THIS APPROACH i

SYSTEMS

— Bivalent, non-gradual evaluation is not natural and does not
support a proper ranking of products.

— No compensation: Several good properties cannot compensate for
a single bad one.

— Extremely sensitive toward noise.

— Flat" structure of the evaluation scheme is not scalable.

single device
interior of a car
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EVALUATION OF INDIVIDUAL CRITERIA h
INTELLIGENT

L] SYSTEMS

,fuzzy range” of
acceptable values

0 > measurement

< > O
excluded ideal excluded
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GENERALIZED AGGREGATION h
INTELLIGENT

L] SYSTEMS

Fuzzy pattern trees support three different modes of aggregation
for criteria:

—CONJUNCTIVE (,and”): both criteria must be fulfilled
—DISJUNCTIVE (,or“): either of the criteria must be fulfilled
—~AVERAGING



AGGREGATION: CONJUNCTION h
INTELLIGENT

L] SYSTEMS

T-norms T : [0,1]* — [0, 1] as generalized conjunctions:

- T
- T
- T (=,
- T

= Tu(z,y) = min(z, y)

- Tp(z,y)=axy

— Tr(z,y) = max(x +y —1,0)
- Ta($7 y) - -

max{z,y,a}

Order relation: T, < Tp < Ty
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AGGREGATION: DISJUNCTION

T-conorms T : [0,1]?2 — [0, 1] as generalized conjunctions:

- —]—M(:Cay) - max(a:,y)
- lp(my)=rz+y—zxy

— _]_L(gg’y) = mlIl(CU + v, 1)
—x-y—min{x,y,1—
- —]—a(xay) = m+ymezf><?1—$,1{—xy%0¢} =

Order relation: Ly < 1p < _1p

h

INTELLIGENT
SYSTEMS
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INTELLIGENT

GENERALIZED AGGREGATION i

SYSTEMS
very N o very
strict conjunctive disjunctive tolerant
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DISCRETE CHOQUET INTEGRAL h
INTELLIGENT

L] SYSTEMS

The discrete Choquet integral of f: C' — R, with respect to u is defined as

follows:
Culf) =D (Fley) = fle—1)) -1 (Aw)
i=1
where (-) is a permutation of {1,...,m} such that

0 < fleq)) < fle) < --- < fleamy), and Ay = {egys - -5 com) }-

The Choquet integral expressed in terms of its Mobius transform:

Cu(f) = Z m,, (1) x min f(c;)

c; €T
TCC
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INTELLIGENT

GENERALIZED AGGREGATION i

SYSTEMS

Choquet integral

very — L very
strict conjunctive disjunctive tolerant
averaging
min max
-y — -y — mi Ly, 1 —
To(z,y) = Lo(zy) = r+y—x-y—min{z,y a}

max{l —z,1 —y,a}
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HIERARCHICAL MODELING h
INTELLIGENT

L] SYSTEMS

from the assessment of basic

skills . .
criteria to an overall evaluation

92



HIERARCHICAL MODELING i

INTELLIGENT

SYSTEMS

from the assessment of basic
criteria to an overall evaluation

skills

formal language
skills skills
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HIERARCHICAL MODELING i

INTELLIGENT

math

SYSTEMS

from the assessment of basic

skills

criteria to an overall evaluation

complex
criterion

Chinese

Spanish French

basic
criterion
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INTELLIGENT

HIERARCHICAL MODELING i

SYSTEMS

from the assessment of basic
criteria to an overall evaluation

skills | 0.3

math Chinese
0.9 0.7 0.5
Spanish French
0.1 0.9

The degree to which the
basic criterion ,speaking
Chinese” is satisfied.

number of points
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FUZZY PATTERN TREES

10

ve

'y
T

~ 0, ©
9

ro w =
ol T T

F+ Wy F AT N S 5 FEF+ 1 E
+ +H _;#. 'ﬂ_'+'-h-.+"+ #+++ +H

i INTELLIGENT
SYSTEMS

Modeling non-linear
dependencies and decision
boundaries in a compact,
interpretable way!
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INTELLIGENT

KNOWLEDGE VS DATA-DRIVEN MODELING i

SYSTEMS

purely knowledge-driven model construction, no learning
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model calibration (pgarameter estimation)
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KNOWLEDGE

INTELLIGENT

VS DATA-DRIVEN MODELING i

SYSTEMS

10
15
16
16
17

O O O OO
U W wvudo
(o )Y \S I \C T \O I V)

R Rk OOHR

learning structure + parameters, purely data-driven model construction



DATA PREPROCESSING

acidity alcohol sulfates sulfur quality
7.4 9.4 0.56 11 5
7.8 10 0.46 13 3
7.8 10.5 0.80 25 6
11.2 9.3 0.91 17 3
7.4 9.8 0.55 12 5
7.3 10.6 0.53 21 4
8.9 9.4 0.66 17 8

h INTELLIGENT

L] SYSTEMS

WINE QUALITY DATA: The task
is to predict the quality of wine (on
a scale from 0 to 10) based on
properties like acidity, level of
alcohol, etc.



DATA PREPROCESSING h

INTELLIGENT
L] SYSTEMS
acidity alcohol sulfates sulfur quality
fow | med | high &ty) WINE QUALITY DATA: The task
7.4 0.89 0.11 0.00 0.56 11 0.50 . . . .
is to predict the quality of wine (on
7.8 0.03 0.97 0.00 0.46 13 0.30
75 1o o7 looo | o8 e P a scale from 0 to 10) based on
112 | 1.00 | 000 | 000 | 0.1 = . properties like acidity, level of
7.4 0.00 | 0.00 | 1.00 | 0.55 12 0.50 alcohol, etc.
7.3 0.00 0.81 0.19 0.53 21 0.40
8.9 0.84 0.16 0.00 0.66 17 0.80
]. I 1 T ]_ T
1 1 1
1 [ () Q [ |
1 1 1
1 1 1
i i I
LOW ! MEDIUM | HIGH !
| *I i
N o | &) o & o d
a attribute domain b a attribute domain b a attribute domain b



DATA PREPROCESSING

h INTELLIGENT

L] SYSTEMS

acidity alcohol sulfates sulfur quality
low | med | hoh £l WINE QUALITY DATA: The task
089 | 017 | 990 20 is to predict the quality of wine (on
0.03 0.97 0.00 0.30
a scale from 0 to 10) based on
0.22 0.78 0.00 0.60 _ . o
100 | 0.00 1 0.00 0.30 properties like acidity, level of
0.00 | 0.00 | 1.00 0.50 alcohol, etc.
0.00 0.81 0.19 0.40
0.84 0.16 0.00 0.80
1 1
LOW MEDIUM HIGH
0 0 0
a attribute domain b a attribute domain b a attribute domain b



DATA PREPROCESSING

h INTELLIGENT

L] SYSTEMS

acidity alcohol sulfates sulfur quality
low | med | hoh £l WINE QUALITY DATA: The task
089 | 017 | 990 20 is to predict the quality of wine (on
0.03 0.97 0.00 0.30
a scale from 0 to 10) based on
0.22 0.78 0.00 0.60 _ . o
100 | 0.00 1 0.00 0.30 properties like acidity, level of
0.00 | 0.00 | 1.00 0.50 alcohol, etc.
0.00 0.81 0.19 0.40
0.84 0.16 0.00 0.80
1 1
LOW MEDIUM HIGH
0 0 0
a attribute domain b a attribute domain b a attribute domain b



FUZZY PATTERN TREE INDUCTION h
INTELLIGENT

L] SYSTEMS

Starting with primitive pattern
trees (fuzzy subset of an
attribute’s domain),

candidate trees are iteratively
expanded and parameterized ... Search for a good model
in the space of all

... and selected based on a tree pattern trees!

performance measure (MSE on
training data),

until a stopping condition is met.
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FUZZY PATTERN TREE INDUCTION h
INTELLIGENT

L] SYSTEMS

Starting with primitive pattern
trees (fuzzy subset of an
attribute’s domain),

candidate trees are iteratively
expanded and parameterized ...

... and selected based on a tree
performance measure (MSE on
training data),

until a stopping condition is met.



FUZZY PATTERN TREE INDUCTION h
INTELLIGENT

L] SYSTEMS

Starting with primitive pattern
trees (fuzzy subset of an
attribute’s domain),

candidate trees are iteratively
expanded and parameterized ... A | B |

... and selected based on a tree
performance measure (MSE on
training data),

until a stopping condition is met.



FUZZY PATTERN TREE INDUCTION h
INTELLIGENT

L] SYSTEMS

Starting with primitive pattern
trees (fuzzy subset of an
attribute’s domain),

candidate trees are iteratively
expanded and parameterized ... A | é

... and selected based on a tree B o |
performance measure (MSE on
training data),

until a stopping condition is met.
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FUZZY PATTERN TREE INDUCTION h
INTELLIGENT

L] SYSTEMS

Starting with primitive pattern
trees (fuzzy subset of an
attribute’s domain),

candidate trees are iteratively

expanded and parameterized ... A | é

... and selected based on a tree Q o |
performance measure (MSE on

training data), B | [ c |

until a stopping condition is met.
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INTELLIGENT

FUZZY PATTERN TREE INDUCTION i

SYSTEMS

Starting with primitive pattern
trees (fuzzy subset of an
attribute’s domain),

candidate trees are iteratively

expanded and parameterized ... Q

... and selected based on a tree A e ] Q
performance measure (MSE on

training data), B | [ c |

until a stopping condition is met.
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FUZZY PATTERN TREE INDUCTION

Starting with primitive pattern
trees (fuzzy subset of an
attribute’s domain),

candidate trees are iteratively
expanded and parameterized ...

... and selected based on a tree
performance measure (MSE on
training data),

until a stopping condition is met.

D

o o

A

i INTELLIGENT
SYSTEMS

= _©

(T A T B O -

=

D |

greedy beam search

Iterative construction of high-level features from low-level features.

Instead of top-down, pattern trees can also be induced bottom-up!
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INTELLIGENT

EXAMPLE: THE WINE QUALITY DATA i

SYSTEMS

Pattern tree induced from a given set of data (wine properties + rating):

acidity

acidity sulfates

I
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INTELLIGENT

FEATURES OF FUZZY PATTERN TREES i

SYSTEMS

» interpretability of the model class

» modularity: recursive partitioning
of critria into sub-criteria

acidity

acidity sulfates
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INTELLIGENT

FEATURES OF FUZZY PATTERN TREES i

SYSTEMS

» interpretability of the model class

» modularity: recursive partitioning

of critria into sub-criteria @

alcohol second
criterion

115



INTELLIGENT

FEATURES OF FUZZY PATTERN TREES i

SYSTEMS

» interpretability of the model class

» modularity: recursive partitioning
of critria into sub-criteria

second acidity

criterion

Likewise: type of aggregation
vs. concrete parametrization
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INTELLIGENT

FEATURES OF FUZZY PATTERN TREES i

SYSTEMS

interpretability of the model class

modularity: recursive partitioning
of critria into sub-criteria

flexibility without the tendency to
overfit the data alcohol

monotonicity in single attributes

acidity

built-in feature selection

. N 3
competitive performance for acidity sulfates

classification and regression
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EXPERIMENTS WITH BENCHMARK DATA h

INTELLIGENT

I SYSTEMS
CLASSIFICATION
Dataset PT-class C4.5 SVM RIPPER NN SLAVE
average rank 2.49 2.69 3.08 3.39 3.65 3.68
REGRESSION
Dataset PT-reg LR REPtree SMO-lin MLP SMO-rbf FR
auto-mpg 1 5 4 6 3 7 8
concrete 2 5 1 7 3 6 8
flarelM 6 1 2 5 7 3 8
flare2C 4 1 2 5 7 6 8
forestfires 6 4 3 2 8 1 7
housing 2 5 3 6 1 7 8
imports-85 5 3 7 1 2 6 8
machine 2 6 7 1 8 5 4
servo 2 5 3 7 1 8 6
slump 3 2 7 4 1 6 8
winequality-red 1 2 6 3 7 4 8
winequality-white 4 2 1 3 6 5 8
average rank 3.17 3.42 3.83 4.17 4.5 5.33 7.42
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INTELLIGENT

CASE STUDY: POLYESTER DYEING i

SYSTEMS

Modeling of color yield in polyester high temperature dyeing as a function of
disperse dyes concentration, temperature and time.

concentration

DYEING :
temperature | color yield

PROCESS

.

Data: 120 input/output examples for 7 different colors.
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CASE STUDY: POLYESTER DYEING i
INTELLIGENT
SYSTEMS

Example of a fuzzy pattern tree:

TIME

CONC

Size of TSK models

Dyes #rules Te Co Ti
Blue 266 13 3 4 4
Brown 1 8 2 2 3
Blue 56 10 3 2 4
Red 60 9 3 2 2
Yellow 7/ 9 2 3 2
Yellow 23 13 5 4 3
Mixture 12 4 4 3

In general, TSK (Takagi-Sugeno-Kang)
models were judged to be much less
comprehensible than the FPT models!
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CASE STUDY: POLYESTER DYEING h
]

BLUE 56
FPT data-driven

LN

FPT data-driven with
expert fuzzy sets

FPT model calibration

accuracy (RMSE)

Mamdani models (purely
knowledge-driven)

|
linear regression

1'20 40 60 80 100
size ot training data
quadratic regression

Average generalization performance as a
function of the sample size.
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PATTERN TREE SOFTWARE

File

INTELLIGENT

(" Classifier i Regression I

= Classifier
¢ [] Offline
¢ [ (Classifer 0|
[} DefaultTv_0
D FuzzyMap_1

D Online

Check website of the Intelligent Systems Group @ UPB

O DefaultPTV_0 X ' O FuzzyMap_1 X

«>» & o @™ edt tolatex

I I RO IS A RO A A RSO RO I RO A IO A IO O
CLASS: lIris-versicolor

P=00]

Zlwidth
-0.1;1.08;2.5]
-0.0]

petallength petalwidth
TRI[1.0;3.41;6.9] TRI[0.1;1.08;2.5]
[P=0.0] [P=0.0]

sepallength
RO[4.3;7.9]
P=0.0]

petalwidth sepalwidth
LO[0.1;2.5] RO[2.04.4]
[P=0.0] [P=0.0]

0.0 0.576 046
ris-set " Iris-virg
Output: 0.567
1.07 Atribute: petalwidth
] Value: 1.244
3 Derivation:-0.739
01 25

LLLAAR AR Ra A AR AR R RRRa N AR R AR R R R R R R R e sn]

1.04
ool
0 B

Aftribute: petallength
Value: 5.2
Derivation:-0.4

.9

1.0
K
0.0
3

79

Attribute: sepallength|
Value: 5.356
Derivation: 0.098

4

1.09 Atribute: sepalwidth
] Value: 3.0
I Derivation: 0.026

[ o L B T B B ]
20 4.4

SYSTEMS
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OUTLINE
h INTELLIGENT

L] SYSTEMS

(D) Prelude

(2) Machine learning 101

(3) Potential contributions of fuzzy logic
(4) Fuzzy pattern trees

(5) Learning from fuzzy data
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LEARNING FROM FUZZY DATA h

INTELLIGENT

- SYSTEMS
_____

0.42 0 10.5

12 0.90 1 154 AR
D 0.61 1 A Py N

11 R 1 R 94.2
BB 0.66 0 654 12.6

19 B 0 127 D

32 0.72 1 y N |

15 0.12 0 [ 62.5

How to analyze and learn from such data?

124



TWO INTERPRETATIONS OF A FUZZY SET h
INTELLIGENT

L] SYSTEMS

The ,,ontic* view (conjunctive interpretation):
— afuzzy set is a real data entity;
— an attribute can assume a fuzzy set as a ,value’, i.e.,
— we have a (fuzzy set)-valued attribute.

EXAMPLE: X = duration of sunshine in Berlin today (with domain F([0, 24]))

A

duration

> h
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TWO INTERPRETATIONS OF A FUZZY SET h
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The ,,epistemic” view (disjunctive interpretation):

— The true value of the attribute is precise, and a fuzzy set is used to
express imprecise knowledge about this value (possibility distribution).

A

speed

@ >
60 90

A FUZZY SET IS NOT THE DATA OBJECT, BUT REPRESENTS
KNOWLEDGE ABOUT THIS OBJECT!
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The two interpretations, ontic and epistemic, call for very different

extensions of methods for data analysis!
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THE ONTIC VIEW
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interval-valued

A / observation

X

Reproducing imprecise observations by means of a set-valued function!
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THE ONTIC VIEW
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interval-valued

? / observation

F* € argmin ) D(Y;, F(2i))
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interval-valued

A / observation
®

b

SET of REAL-VALUED functions instead of a single SET-VALUED function!
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A model is deemed possible if there is an INSTANTIATION (a possible
set of precise observations) for which it yields an optimal fit ...

- EXTENSION PRINCIPLE (applied to a data analysis method) ?
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THE EXTENSION PRINCIPLE h
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= For example, interval arithmetics: [1,5] © [1,3] = [—2,4]

x1E€A1 x2€As

All instantiations of (single-valued) input values are treated the same and
equally contribute to the output!
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» Alearning algorithm is a mapping from data to models:

f:D" M, d=(di,...,dn) —~ M
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THE EXTENSION PRINCIPLE

h

A learning algorithm is a mapping from data to models:

f:D" M, d=(di,...,dn) —~ M

-
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MODEL SPACE
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THE EXTENSION PRINCIPLE

h

A learning algorithm is a mapping from data to models:

f:D" M, d=(di,...,dn) —~ M

&

SAMPLE SPACE

~

extension

/

-
P

MODEL SPACE

o

/
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SYSTEMS
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Questioning the equal treatment of all instantiations ...

In data analysis, a method inducing a model from a set of data always comes
with certain MODEL ASSUMPTIONS (learning bias), and under these
assumptions, specific instantiations may appear more plausible than others!

... to be explained through some simple examples.
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A

classes
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A

classes
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DATA DISAMBIGUATION

A
classes
H B []
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>

The more biased the view, the less ambiguous the data looks like.
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A

O =1{0. 0!

assume both class distributions to be Gaussian
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N
O={0. 0!} plausible
instantiation
© e
~ GD o
S
NNN
e Ye)
quadratic 5
discriminant
o 8%
(o)
o o)
(DC) o
o)
> 2

assume both class distributions to be Gaussian
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A

less plausible
instantiation

O0={0. 0!

assume both class distributions to be Gaussian
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DATA DISAMBIGUATION

MORE PLAUSIBLE

A plausible instantiation that can be fitted

reasonably well with a LINEAR model!

h INTELLIGENT

L] SYSTEMS

LESS PLAUSIBLE

A less plausible instantiation, because
there is no LINEAR model with a good fit!
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DATA DISAMBIGUATION i

PLAUSIBLE PLAUSIBLE

Y
. \ V4
’ (]
”~ W 4
\ /, \ V4
[ NN ,/, \\ /,
Yy \\\- e ,/’- Y \\ l,
N - \ ’
~ ’/ 4
Sl .- a\ /
\\, Il‘/,l-
’\s__¢,,
X I
A plausible instantiation that can be fitted A plausible instantiation that can be fitted
quite well with a QUADRATIC model! quite well with a QUADRATIC model!

It all depends on how you look at the data!
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identification

disambiguation

» In the setting of supervised learning with discriminative models, we suggest
that model identification and data disambiguation can support each other,
and should be performed simultaneously.

= Not only the data is telling us something about the model, but also the model
(assumptions) about the data.
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... Is a specific type of weakly supervised learning, studied under different
names in machine learning:

— learning from patrtial labels
— multiple label learning
— learning from ambiguously labeled examples

... also connected to learning from coarse data in statistics (Rubin, 1976; Heitjan and
Rubin, 1991), missing values, data augmentation (Tanner and Wong, 2012),

... as well as data modeling based on generalized sets and measures, such as fuzzy
data (Kwakernaak, 1978; Kruse and Meyer, 1987; Puri and Ralescu, 1986; Coppi et al.,
2006; Bandemer and Nather, 2011; Viertl, 2011) and belief functions (Denoeux, 1995).
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SUPERVISED LEARNING h
INTELLIGENT

L] SYSTEMS

Given a set of (i.i.d.) training data

D= {($1,y1)7---a($N,yN)} CXx)Y

and a hypothesis space H C Y, find a model with low risk

R(h):/XXyL(h(:I:),y)dP(m,y).

]

loss function data generating
process
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X = R%

y={-1,+41}

A
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EXAMPLE: BINARY CLASSIFICATION i
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0/1 loss

hinge loss

SYSTEMS

loss L(y,s) = f(ys)

signed score

ys = y(w' x)
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SUPERSET LEARNING i

SYSTEMS
e Set of imprecise/ambiguous/coarse observations

O = {(ml,Yl), e (:BN,YN)}

with supersets Y,, > v,,.

e An instantiation of O, denoted D, is obtained by replacing each Y,,
with a candidate y,, € Y,,.

A

>

Yy one of infinitely
I ‘ many instantiations
X
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O ={0, 0!

A

SYSTEMS

semi-supervised
learning
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EXAMPLE: CLASSIFICATION

h

L]
L1 L2 X3 Y1 Y2 Ys3 Y4q
21.9 0 154.3
43.2 1 133.2
53.3 1 163.5
42.7 0 142.8

INTELLIGENT
SYSTEMS
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EXAMPLE: CLASSIFICATION i
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L1 L2 X3 Y1 Y2 Y3 Y4q
21.9 0 154.3 -

43.2 1 133.2 -
53.3 1 163.5 -
42.7 0 142.8 -
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EXAMPLE: CLASSIFICATION

b

L1 L2 X3 Y1 Y2 Y3 Y4q
21.9 0 154.3 -

43.2 1 133.2 -

53.3 1 163.5 -

42.7 0 142.8 -

INTELLIGENT

SYSTEMS
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EXAMPLE: COMPLEX DATA
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In label ranking, we learn mappings from instances to rankings:

A~ C

incomplete
observation

xIr

€«>

—

— A>=C>=D>=B

A-C~B>=D
A-C~D>=B
A-B>=C>=D
2 SN GEE
D-=B>A>C

—

set of consistent
completions
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=
MODEL generation precise imprecisiation imprecise
DATA coarsening DATA

Py (D) P,(O|D)

e We are interested in learning with weak assumptions about the

coarsening process, and learning algorithms ought to be robust with
respect to these assumptions.

e Similar to epistemic random set setting ({2, P,Y), but with little
knowledge about multi-valued mapping Y : Q — 27.

e Discriminative learning, not generative.
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EMPIRICAL RISK MINIMIZATION h
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Given a set of (i.i.d.) training data and a hypothesis space H C Y, find
a model with minimal empirical risk

In general, ERM won’t work well (unless N is large)...
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GENERALIZED ERM h
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We propose a principle of generalized empirical risk minimization with
the empirical risk

N
Remp( Z Yn, h(x, )

and the optimistic superset loss (OSL) function

L*(Y,9) = min {L(y,§) [y € Y} .

|

how well the (precise) model
fits the imprecise data
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We propose a principle of generalized empirical risk minimization with
the empirical risk

R, (h) = % S L (Y, b))

n=1

and the optimistic fuzzy superset loss (OFSL) function

L*(Y, ) = /01 L*([Y]a,g) da
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GENERALIZED ERM h
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e Generalized ERM derives from a likelihood-based approach, which
proceeds from P(D, O | h),

e and makes (weak) assumptions about the coarsening P(O | D, h).
e Further, it exploits additivity of the loss.

e Finally, the logistic loss is replaced by any other loss function.

Why should generalized ERM actually work?
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SPECIAL CASES i

The e-insensitive loss L(y,y) = max(|y — y| — €,0) used in support vector
regression corresponds to L* with L the standard Ly loss L(y,y) = |y — g| and
precise data y,, being replaced by interval-valued data Y,, = |y,, — €, y,, + €.
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Huber loss
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(generalized) Huber loss
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The Kendall loss used in label ranking:

L, &) =Y | sign(r(s) — 7(j)) # sign(# (i) — 7))

1<J

— Cheng and H. (2015) compare an approach to label ranking based
on superset learning with state-of-the-art approaches.

— Very strong performance, more robust toward incompleteness.

New methods as natural instantiations of the
generalized ERM framework!
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THEORETICAL FOUNDATIONS h
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» Under what conditions is (successful) learning in the superset
setting actually possible?
= Specifically, under what conditions does generalized ERM work?
= Couldn’t the optimism induce a strong bias?

= Might other principles be better?

y,9) |y €Y}
L*(Y,9) =avg {L(y,9) |y € Y}
v, 9) |y eY}
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B add B

systematic (adversarial) coarsening
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non-systematic (random) coarsening
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w
o
-
= positive class
® ]
o
N
© negative class
S
o |
e | I T T T T l
-3 -2 -1 0 1 2 3
+1, x>0
ho(x) =
-1, x<¥6
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02 03 04 0.5

0.1

threshold 6
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b

AN EXAMPLE

G0 v0 €0 <20

10

threshold 6
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AN EXAMPLE
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All examples are coarsened with probability 0.2.

(xi,y;) with probability 0.8

(i, Yi)
(i, {—1,+1}) with probability 0.2
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All

02 03 04 0.5

0.1

SYSTEMS

examples are coarsened with probability 0.2.

threshold 6
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Examples with x between 1 and 2 are coarsened.

(xia {_17+1}) if S [172]
(74, yi)

(x;,1;) otherwise

176



INTELLIGENT

AN EXAMPLE i

SYSTEMS

Examples with x between 1 and 2 are coarsened.

02 03 04 0.5

0.1

threshold 6
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AN EXAMPLE
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Positive examples are coarsened with probability 1/2.

(i, +1) with probability 0.5
(x;, {—1,41}) with probability 0.5

(332'7_1) (x’b_l)
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Positive examples are coarsened with probability 1/2.

02 03 04 0.5

0.1

threshold 6
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The balanced benefit condition:

 R*(h) R* ()
0< < inf <
M= 0en R = new R(B)

<mn <1,

where R*(h) is the expected superset loss of h.

For sufficiently large sample size,
R(M < R<h*) + A(dH7 €, 57 M, 772> )

with probability 1 — 0, where d3 is the Natarajan dimension of H, h* the
Bayes predictor and A the minimizer of R}

emp"
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Liu and Dietterich (2014) consider the ambiguity degree, which is
defined as the largest probability that a particular distractor label
co-occurs with the true label in multi-class classification:

v = sup {waps(m,w(ﬁ cY)|(x,y) € X x Y, L eV, p(x,y) > 0,0+ y}

Let & =log(2/(1 4+ 7)) and dy the Natarajan dimension of H. Define

4 1 1
no(H, e, 0) = 0e (dH (log(éld% + 2log L + log (9—€>) + log (5> + 1) :

Then, in the realizable case, with probability at least 1 — ¢, the model with
the smallest empirical superset loss on a set of training data of size
n > no(H,e€,d) has a generalisation error of at most e.
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So far: Imprecision as a necessary evil
Observations are imprecise/incomplete, and we have to deal with that!

Now: Imprecision as a means for modeling

Deliberately turn precise into imprecise data, so as to modulate the
influence of an observation on the learning process!

Motivated by the following monotonicity property:

YCcY' = L*Y,)>L*Y',)
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We suggest an alternative way of weighing examples, namely, via
,data imprecisiation® ...

*
modulating the influence of a training modulating the influence of a
example (x;,y;) by multiplying the training example (x;,y;) by
loss with a constant w;. coarsening the observation y;.
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We suggest an alternative way of weighing examples, namely, via
,data imprecisiation® ...

N

1
full support for
precise observation
Yy
N A
1 [
Ww;-
Yy Yy
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OSL

loss

weighted loss

A

Yy
Different ways of (individually) discounting the loss function.

In (Lu and H., 2015), we empirically compared standard locally weighted
linear regression with this approach and essentially found no difference.
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We suggest an alternative way of weighing examples, namely,
via ,,data imprecisiation® ...

N

1

certainly positive

1 —w
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> SCOre S

GENERALIZED HINGE LOSS
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weighted loss

v

Different ways of (individually) discounting the loss function.
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THE HAT LOSS i

the hat loss

Semi-supervised learning with SVMs: Consider unlabeled data as instances
labeled with the superset {—1,+1}. The generalized loss L* with L the standard
hinge loss then corresponds to the (non-convex) “hat loss”.
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= Machine learning is a flourishing field, at the core of data science, and is
apparently doing well without fuzzy logic.

* Yet, interesting contributions to fuzzy machine learning have already
been made, and even more significant ones are conceivable.

» Going beyond straightforward fuzzy extensions of conventional ML
methods, we need to focus on the right topics, correctly appraise the
(complementary) role of fuzzy sets in learning from data, and avoid
unwarranted claims.

= As an example of using fuzzy systems for modeling, we presented fuzzy
pattern trees as a novel model class that nicely combines expressivity
and transparency.

» |n addition to modeling functional dependencies, fuzzy sets can also be
used for modeling data; we addressed this issue and presented basic
ideas of (fuzzy) superset learning.
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