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“Machine learning is the science of
getting computers to act without being

explicitly programmed.”

Andrew Ng, 2013

“Machine learning is the
science and art of algorithms

that make sense of data.”

Peter Flach, 2012
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a l g o r i t h m

domain expert = programmer

ALGORITHM shortest-path(V,T)
W := {v1}   
ShortDist[v1] :=0   
FOR each u in V - {v1}      

ShortDist[u] := T[v1,u]         
WHILE W /= V      

MinDist := INFINITE      
FOR each v in V - W         

IF ShortDist[v] < MinDist
MinDist = ShortDist[v]
w := v         

END {if}      
END {for}      
W := W U {w}      
FOR each u in V - W         

ShortDist[u] := Min(ShorDis[u],ShortDist[w] + T[w,u])   
END {while}
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Requires a comprehensive understanding and adequate formalization, 
not only of the problem, but also of the solution process. 

a l g o r i t h m

domain expert = programmer
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A U TO N O M O U S  C A R S

action vector
state vector

describing the
environment

G A M E  P L AY I N G ROBOT 	 SOCCER

MALE 

I M A G E  R E C O G N I T I O N
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H u m a n  s k i l l s a r e n o t  a l w a y s e a s y  t o e x p l a i n !

MALE 
OR 

FEMALE
F
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H u m a n  s k i l l s a r e n o t  a l w a y s e a s y  t o e x p l a i n !

For example, a reduction 
of the search space does 
not immediately imply 
better solutions.

Eine Beschränkung des 
Suchraums führt beispielsweise
nicht unmittelbar zu besseren
Lösungen. 

F
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How to teach a	robot
to swing?



L E A R N I N G  F R O M  D ATA

9

- give examples and let
the system generalize

à supervised learning

Instead of providing a complete and consistent description of domain
knowledge, it is easier to ...

- demonstrate and let the
system imitate

- let the system explore
and provide feedback

à reinforcement learning à imitation learning

MALE 
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L E A R N E RDATA
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- correctness
- complexity (time,	space)

- correctness (?)
- complexity (time,	space)
- sample	complexity

L E A R N ERDATA

computer scientist

data scientist
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Probably Approximately Correct (PAC)	learning:	
Efficiently finding a	hypothesis that is „good“	with high	probability!

✏-close to the target

with probability � 1� �
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Machine learning is an option whenever explicitly designing an algorithm 
by hand appears intricate, while data is available that provides, in one way 
or the other, useful hints at what the sought functionality may look like. 

F

neural networks
kernel machines
decision trees

…

The ability to generalize (beyond training data) as a major theme …
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data is readily available or
can easily be produced

o male
o female

simulation, 
training through

trial and error

make use of
existing data

r e i n f o r c e m e n t l e a r n i n g s u p e r v i s e d l e a r n i n g

u n s u p e r v i s e d
l e a r n i n g
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technical systems (diagnosis,	
control,	monitoring,	…)	

games (e.g.	soccer,	go,	…)

medicine (diagnosis,	
prosthetics,	...)

Internet	(information retrieval,	email
classification,	personalization,	…)

smart	environments

biometrics (person
identification,	…)

bioinformatics,	
genomic data analysismedia	(speech/image

recognition,	video mining,	…)

business (CRM,	response
prediction,	…)

banking and	finance (stock	prediction,	
fraud detection,	…)

autonmous driving
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à analyze and help understand
a phenomenon that exists in 
the real world

ANALYTIC V IEW SYNTHETIC V IEW

à support the design/engineering
of a system with certain
desirable properties
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①Prelude
②Machine learning 101
③Potential contributions of fuzzy logic
④Fuzzy pattern trees

⑤ Learning from fuzzy data
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ML problems

unsupervised supervisedreinforcement
learning

online

classification

binary multi-classhierarchical multi-target

regression structured
outputs

active and weakly
supervised

batch streams
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Learning Paradigms

- Active learning 
and experiment design 

- Cost-sensitive learning
- Inverse reinforcement learning 
- Meta learning
- Multi-task learning
- Online learning
- Reinforcement learning
- Semi-supervised learning
- Transductive learning
- Structured output prediction
- Transfer learning
- …

Machine Learning Methodologies

- Deep learning
- Gaussian processes 
- Graphical models

and Bayesian networks 
- Inductive logic programming 
- Kernel-based methods

and support vector machines
- Latent variable and topic models
- Markov networks
- Preference learning and ranking 
- Relational learning 
- Rule and decision tree learning
- Sparsity and compressed sensing
- …
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Supervised learning:
Learner is provided with explicit examples of how to act in certain situations, 
i.e., what outputs the target model is supposed to produce for specific inputs. 
Thus, the training data can be seen as examples of “correct solutions” (albeit 
mistakes are tolerated) that are made available by an external teacher.

Unsupervised learning:
The learner merely observes the data (for example, handwritten digits), but 
without any type of supervision. The main goal in unsupervised learning is to 
discover structure in the data, for example represented as a grouping of data 
into clusters. 

Reinforcement learning:
Although feedback is provided to the learner, it is typically of an indirect nature 
and may come with a temporal delay. A common example is game playing, 
where the goal is to learn a policy that maps states (of the game) to optimal 
actions.
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EMAIL

SPAM or
Not SPAM
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accept acceptreject

…....

{ accept,	reject }h
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{0,1, ..., 9}h
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h
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data generating
process

loss function

Given a set of (i.i.d.) training data

D =
n

(x1, y1), . . . , (xN , yN )
o

⇢ X ⇥ Y

and a hypothesis space H ⇢ YX
, find a model with low risk

R(h) =

Z

X⇥Y
L
�

h(xi), yi
�

dP(x, y) .

Other criteria might be important, too …
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set of
linear	models h⇤ 2 argmin

h2H

Z

X⇥Y
L
�
h(xi), yi

�
dP(x, y) .

L(y, ŷ) =

⇢
0 if y = ŷ
1 if y 6= ŷ
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graph (molecule) class

{ active, non-active }
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(Mary takes the bus)

S

Mary   takes the bus

NP

VP

V

N

sequence tree
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x = (x1, x2, . . . , xd) 2 Rd

EMAIL

Many	ML	algorithms	operate	in	Euclidean	spaces	…
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x > 0
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Data entities represented as feature vectors:

SPAM

NO 
SPAM



F E AT U R E  E N G I N E E R I N G

31
−4 −2 0 2 4 6 8
−3

−2

−1

0

1

2

3

4

5

6

7

8

Data entities represented as feature vectors:
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NO 
SPAM
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Given a set of (i.i.d.) training data

D =
n

(x1, y1), . . . , (xN , yN )
o

⇢ X ⇥ Y

and a hypothesis space H ⇢ YX
, find a model with low empirical risk

Remp(h) =
1

N

N
X

i=1

`
�

h(xi), yi
�

,

i.e.,

h⇤ 2 argmin
h2H

1

N

N
X

i=1

`
�

h(xi), yi
�

.

In general, ERM won’t work very well …
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C H O I C E  O F  T H E  M O D E L S PA C E
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P
U
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overfitting and
underfitting leads to
poor generalization

38
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s amp l e 	 s i z e

e
xp
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e
d
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learning curve for a flexible model class
(such as deep neural networks)

learning curve for a simple model class
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regularizer

Given a set of (i.i.d.) training data

D =
n

(x1, y1), . . . , (xN , yN )
o

⇢ X ⇥ Y

and a hypothesis space H ⇢ YX
, find a model minimizing

Rreg(h) =
1

N

N
X

i=1

L
�

h(xi), yi
�

+ ��(h) ,

for example

Rreg(h) =
1

N

N
X

i=1

�

w

>
xi � yi

�2
+ � kwk2 .
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0/1	loss

logistic

hinge

exponential

S U R R O G AT E  A N D  M A R G I N  L O S S E S
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A

B

Decision trees define a	classification
function through recursive

partitioning of the instance space.

R G B

15 20 25

R G B

15 12 21

R G B

0 8 4
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A

B

Decision trees define a	classification
function through recursive

partitioning of the instance space.

R G B

15 20 25

R G B

14 18 25

R G B

1 2 25

high	entropy

low entropyhigh	entropy
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A

B

G R E E N R E D

B LU E

A

B

Decision trees define a	classification
function through recursive

partitioning of the instance space.
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§ Performing well on the training data does not mean you will 
generalize well to new data!

§ In many cases, model induction eventually comes down to 
solving an optimization problem. 

§ While solving this problem is an important (algorithmic) part of ML, 
the true challenge is to specify the right problem, i.e., the 
objective function to the optimized!

§ Besides, incorporating the available domain knowledge is often 
key to success!
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10 20 30 40

10

1

100

overfitting and
underfitting leads to
poor generalization

Learning = updating prior knowledge against the background of observed data 
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Data compensates for lack of knowledge …
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TEMP

CELL 
GROWTH

10 20 30 40

10

1

100

Data compensates for lack of knowledge …
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L E A R N I N G  F R O M  D ATA

prior knowledge

data/observations

induction
principle

learning
algorithm

model/
hypothesis

M O D E L  
I N D U C T I O N

… used for
§ prediction
§ adaptation, control
§ explanation
§ systems analysis

57

Problem of induction: adapting a suitable representation so as to fit 
observed data and generalize well to new data.

mathematical
structure
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①Prelude
②Machine learning 101

③Potential contributions of fuzzy logic
④Fuzzy pattern trees

⑤ Learning from fuzzy data
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In its major application fields (approximate reasoning, control, decision making, 
querying, retrieval and information systems, …), fuzzy logic has primarily been 
used as a tool for knowledge representation and information processing.

PREMISES
MODELS

ASSUMPTIONS

CONCLUSIONS
OBSERVATIONS

DATA

(fuzzy) logical deduction

(statistical) induction
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IF ... THEN ...
IF ... THEN ...
IF ... THEN ...
IF ... THEN ...
IF ... THEN ...
IF ... THEN ...
...

expert symbolic representation

model

precisiation

inference

formalization

fuzzy logic as a	human-
machine interface
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IF temp is low AND time is low THEN yield is low

IF temp is low AND time is med THEN yield is low

IF temp is low AND time is high THEN yield is med

IF temp is high AND time is low THEN yield is med
IF temp is high AND time is med THEN yield is med

IF temp is high AND time is high THEN yield is high

temperature

time
color yield

DY E I N G 	
P RO C E S S

temp = 80, time = 120, yield = ??

...

...
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data numerical representation

model

induction

inference

preprocessing machine
learning
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data numeric representation

model

induction

inference

preprocessing machine
learning

Any benefits of learning
a	fuzzy model?
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Machine 
Learning

Fuzzy Logic
Fuzzy Systems

Fuzzy
Machine 
Learning

§ Extending machine learning through concepts, tools, and techniques 
from fuzzy logic and fuzzy systems modeling.

§ Enhancing fuzzy systems modeling through data-driven approaches.
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F u z z i f i c a t i o n o f  m o d e l s  

§ Fuzzy extension of standard, non-fuzzy models and methods (blurring the 
distinction between symbolic and numeric methods, logic-based and 
arithmetic expressions, discrete and continuous models).

§ For example, fuzzy rule induction, fuzzy decisions trees, fuzzy nearest 
neighbor estimation, fuzzy support vector machines, etc.

§ Extension of the representation of corresponding models by means of 
fuzzy concepts, e.g., fuzzy instead of crisp partitions in decision tree 
learning.
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xt

0.6

0.60.4

(xi, yi) (xi, yi)
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F u z z i f i c a t i o n o f  m o d e l s  

§ Fuzzy extension of standard, non-fuzzy models and methods (blurring the 
distinction between symbolic and numeric methods, logic-based and 
arithmetic expressions, discrete and continuous models).

§ For example, fuzzy rule induction, fuzzy decisions trees, fuzzy nearest 
neighbor estimation, fuzzy support vector machines, etc.

§ Extension of the representation of corresponding models by means of 
fuzzy concepts, e.g., fuzzy instead of crisp partitions in decision tree 
learning.

§ Often leads to increased flexibility of the model class (e.g., non-axis-
parallel boundaries in rule models), which may or may not be an 
advantage with regard to generalization performance. 

§ Typically accompanied by an increased computational complexity.

§ Link to fuzzy sets and fuzzy logic often not obvious. 
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I n t e r p r e t a b i l i t y

§ Exploiting the usefulness of fuzzy logic in constructing interpretable 
models (à linguistic modeling).

§ Often taken for granted, without providing a real “proof” of interpretability.

§ Are logical structures (necessarily) less interpretable than analytical 
expressions and ”formulas”? 

§ Transparency is compromised by the size of (accurate) models (e.g., 
number and length of rules), complex interaction and inference. 

§ Transparency/accuracy compromise.

§ Are fuzzy sets constructed in a data-driven way semantically meaningful?

§ Knowledge-based versus data-driven construction of fuzzy models 
(human changes role from “producer” to “consumer”). 
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U n c e r t a i n t y

§ Learning from data is inseparably connected with uncertainty.

§ One may argue that probability alone is not enough to capture all relevant 
sorts of uncertainty.

§ Generalized uncertainty formalisms (typically based on non-additive 
measures), such as possibility theory, may therefore be useful.

§ Distinction between aleatoric and epistemic uncertainty.

§ Representing uncertain data (ontic or epistemic).
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§ Fuzzy modeling beyond expressing functional dependencies.

§ For example, formalization of the learning problem (e.g., loss functions), 
mathematical structure of data spaces (e.g., state space abstraction in 
reinforcement learning), feature modeling, etc.

§ Well-studied (fuzzy) concepts such as aggregation functions and fuzzy 
relations allow for specifying key notions, such as fuzzy order relations 
and generalized transitivity.

§ Many ways for incorporating prior knowledge in the learning process (e.g., 
specifying structure of a rule-based system, learning parameters).  

§ Non-inductive inference, such as (similarity-based or analogical) 
knowledge transfer in transfer and multi-task learning.
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[Thibault et al. Cells nuclei classification using shape and texture indexes. WSCG 2008.]

Hudchinson-
Gilford syndrome

healthy pathological

shapes of cells
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…

F U Z Z Y F E AT U R E  
E N G I N E E R I N G

low-level feature
(e.g., pixel)

meaningful
high-level	feature
(e.g.,	roundness)

linguistic modeling
fuzzy inference

Reduces 
dimensionality 
and increases 
interpretability!

The	expert	only needs to know THAT	but	not	
HOW	the features influence the output!



homo-
geneous

not homo-
geneous

round

not round

F U Z Z Y F E AT U R E  M O D E L I N G
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roundness (shape)

ho
m

og
en

ity
(te

xt
ur

e)

0 1
0

1

Use of gradual (instead of binary) features can increase discriminative power!

separable non-separable
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feature modeling 
and selectionspecification of the 

model space (with 
the right capacity)

T H E R E  I S  A N E E D  
F O R  M O D E L I N G  !  

data and output 
modeling
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①Prelude
②Machine learning 101

③Potential contributions of fuzzy logic
④Fuzzy pattern trees
⑤ Learning from fuzzy data
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Fuzzy rule models are universal approximators, but ...
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Flexibility of
fuzzy models
requires many

rules!

Fuzzy rule models are universal approximators, but ...
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Flexibility of
fuzzy models
requires many

rules!

Fuzzy rule models are universal approximators, but ...
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§ flat structure
§ local model components
§ restricted (logical) combination

§ hierarchical structure
§ global model components
§ flexible aggregation functions

F U Z Z Y R U L E  S Y S T E M S F U Z Z Y PAT T E R N  T R E E S



F U Z Z Y PAT T E R N  T R E E S

§ FPT is a type of fuzzy model that was independently introduced in

- Z. Huang, TD. Gedeon, and M. Nikravesh. Pattern trees induction: A new
machine learning approach. IEEE TFS 16(4), 2008. 

- Y. Yi, T. Fober and E.H. Fuzzy Operator Trees for Modeling Rating Functions. 
Int. J. Comp. Intell. and Appl. 8(1), 2009.

80

§ It has recently been further developed in

- R. Senge and E.H. Pattern Trees for Regression and Fuzzy Systems Modeling. 
Proc. WCCI-2010, Barcelona, Spain, 2010.

- R. Senge and E.H. Top-Down Induction of Fuzzy Pattern Trees. IEEE TFS, 
19(2), 2011.

- R. Senge and E.H. Fast Fuzzy Pattern Tree Learning for Classification. IEEE 
TFS, 23(6), 2015. 
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measurements

all	right not all	right all	right

not all	right
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basic
criterion

basic
criterion

basic
criterion

AND
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D R AW B A C K S  O F  T H I S  A P P R O A C H

- Bivalent, non-gradual evaluation is not natural and does not
support a proper ranking of products.

- No compensation: Several good properties cannot compensate for
a single bad one.

- Extremely sensitive toward noise.

- „Flat“ structure of the evaluation scheme is not scalable.

interior of a car
single device

84
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measurement

„fuzzy range“	of
acceptable values

idealexcluded excluded

1

0
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G E N E R A L I Z E D  A G G R E G AT I O N

Fuzzy pattern trees support three different modes of aggregation
for criteria:

-CONJUNCTIVE („and“): both criteria must be fulfilled

-DISJUNCTIVE („or“): either of the criteria must be fulfilled

-AVERAGING

86
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very
strict

very
tolerantconjunctive disjunctive

89



D I S C R E T E  C H O Q U E T  I N T E G R A L

90



G E N E R A L I Z E D  A G G R E G AT I O N

very
strict

very
tolerantconjunctive disjunctive

averaging
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Choquet integral
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from the assessment of basic
criteria to an overall evaluation
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skills
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from the assessment of basic
criteria to an overall evaluation
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AND

formal 
skills

skills

language
skills
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from the assessment of basic
criteria to an overall evaluation
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AVG

AND

OR

math CS Chinese AND

Spanish French

skills

basic
criterion

complex
criterion



H I E R A R C H I C A L M O D E L I N G

from the assessment of basic
criteria to an overall evaluation

number of points

0.9 0.7

0.8

0.5

0.1 0.9

0

0.5

0.3

The degree to which the
basic criterion „speaking
Chinese“ is satisfied.
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AVG

AND

OR

math CS Chinese AND

Spanish French

skills



F U Z Z Y PAT T E R N  T R E E S

96

AVG

AND

OR

BB AA

A

B

Modeling non-linear 
dependencies and decision
boundaries in a compact, 
interpretable way!
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K N O W L E D G E  V S  D ATA - D R I V E N  M O D E L I N G

A WM(0.3)

TL

C

A

MAX

B

purely knowledge-driven model construction, no learning
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K N O W L E D G E  V S  D ATA - D R I V E N  M O D E L I N G

WM(0.3)

TL

MAX

AVG

AND

OR

0.6 3 10 1
0.7 2 15 0
0.9 2 16 0
0.3 2 16 1
0.5 6 17 1
... . .. .

model calibration (parameter estimation)

A

C

A B

A

C

A B
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K N O W L E D G E  V S  D ATA - D R I V E N  M O D E L I N G

A AVG

AND

C

A

OR

B

0.6 3 10 1
0.7 2 15 0
0.9 2 16 0
0.3 2 16 1
0.5 6 17 1
... . .. .

model calibration (parameter estimation)

WM(0.3)

TL

MAX

A

C

A B
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K N O W L E D G E  V S  D ATA - D R I V E N  M O D E L I N G

A

C

A B

0.6 3 10 1
0.7 2 15 0
0.9 2 16 0
0.3 2 16 1
0.5 6 17 1
... . .. .

WM(0.3)

TL

MAX

A

C

A B
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K N O W L E D G E  V S  D ATA - D R I V E N  M O D E L I N G

0.6 3 10 1
0.7 2 15 0
0.9 2 16 0
0.3 2 16 1
0.5 6 17 1
... . .. .

learning structure + parameters, purely data-driven model construction

WM(0.3)

TL

MAX

A

C

A B



D ATA P R E P R O C E S S I N G

acidity alcohol sulfates sulfur quality

7.4 9.4 0.56 11 5

7.8 10 0.46 13 3

7.8 10.5 0.80 25 6

11.2 9.3 0.91 17 3

7.4 9.8 0.55 12 5

7.3 10.6 0.53 21 4

8.9 9.4 0.66 17 8

WINE QUALITY DATA: The task
is to predict the quality of wine (on 
a scale from 0 to 10) based on 
properties like acidity, level of
alcohol, etc.

102



D ATA P R E P R O C E S S I N G

acidity alcohol sulfates sulfur quality

7.4 9.4 0.56 11 5

7.8 10 0.46 13 3

7.8 10.5 0.80 25 6

11.2 9.3 0.91 17 3

7.4 9.8 0.55 12 5

7.3 10.6 0.53 21 4

8.9 9.4 0.66 17 8

acidity alcohol sulfates sulfur quality

low med high G(y)

7.4 0.89 0.11 0.00 0.56 11 0.50

7.8 0.03 0.97 0.00 0.46 13 0.30

7.8 0.22 0.78 0.00 0.8 25 0.60

11.2 1.00 0.00 0.00 0.91 17 0.30

7.4 0.00 0.00 1.00 0.55 12 0.50

7.3 0.00 0.81 0.19 0.53 21 0.40

8.9 0.84 0.16 0.00 0.66 17 0.80

WINE QUALITY DATA: The task
is to predict the quality of wine (on 
a scale from 0 to 10) based on 
properties like acidity, level of
alcohol, etc.

103

attribute domain ba
0

1

attribute domain ba
0

1

attribute domain ba
0

1

LOW MED IUM H IGH
0.2

0.8

0



D ATA P R E P R O C E S S I N G

acidity alcohol sulfates sulfur quality

7.4 9.4 0.56 11 5

7.8 10 0.46 13 3

7.8 10.5 0.80 25 6

11.2 9.3 0.91 17 3

7.4 9.8 0.55 12 5

7.3 10.6 0.53 21 4

8.9 9.4 0.66 17 8

acidity alcohol sulfates sulfur quality

low med high G(y)

7.4 0.89 0.11 0.00 0.56 11 0.50

7.8 0.03 0.97 0.00 0.46 13 0.30

7.8 0.22 0.78 0.00 0.8 25 0.60

11.2 1.00 0.00 0.00 0.91 17 0.30

7.4 0.00 0.00 1.00 0.55 12 0.50

7.3 0.00 0.81 0.19 0.53 21 0.40

8.9 0.84 0.16 0.00 0.66 17 0.80

acidity alcohol sulfates sulfur quality

low med high G(y)

0.89 0.11 0.00 0.50

0.03 0.97 0.00 0.30

0.22 0.78 0.00 0.60

1.00 0.00 0.00 0.30

0.00 0.00 1.00 0.50

0.00 0.81 0.19 0.40

0.84 0.16 0.00 0.80

WINE QUALITY DATA: The task
is to predict the quality of wine (on 
a scale from 0 to 10) based on 
properties like acidity, level of
alcohol, etc.
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attribute domain ba
0

1

attribute domain ba
0

1

attribute domain ba
0

1

LOW MED IUM H IGH



D ATA P R E P R O C E S S I N G

acidity alcohol sulfates sulfur quality

7.4 9.4 0.56 11 5

7.8 10 0.46 13 3

7.8 10.5 0.80 25 6

11.2 9.3 0.91 17 3

7.4 9.8 0.55 12 5

7.3 10.6 0.53 21 4

8.9 9.4 0.66 17 8

acidity alcohol sulfates sulfur quality

low med high G(y)

7.4 0.89 0.11 0.00 0.56 11 0.50

7.8 0.03 0.97 0.00 0.46 13 0.30

7.8 0.22 0.78 0.00 0.8 25 0.60

11.2 1.00 0.00 0.00 0.91 17 0.30

7.4 0.00 0.00 1.00 0.55 12 0.50

7.3 0.00 0.81 0.19 0.53 21 0.40

8.9 0.84 0.16 0.00 0.66 17 0.80

acidity alcohol sulfates sulfur quality

low med high G(y)

0.89 0.11 0.00 0.50

0.03 0.97 0.00 0.30

0.22 0.78 0.00 0.60

1.00 0.00 0.00 0.30

0.00 0.00 1.00 0.50

0.00 0.81 0.19 0.40

0.84 0.16 0.00 0.80

WINE QUALITY DATA: The task
is to predict the quality of wine (on 
a scale from 0 to 10) based on 
properties like acidity, level of
alcohol, etc.
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attribute domain ba
0

1

attribute domain ba
0

1

attribute domain ba
0

1

LOW MED IUM H IGH



F U Z Z Y PAT T E R N  T R E E  I N D U C T I O N

§ Starting with primitive pattern 
trees (fuzzy subset of an 
attribute’s domain),

§ candidate trees are iteratively 
expanded and parameterized …

§ … and selected based on a tree  
performance measure (MSE on 
training data),

§ until a stopping condition is met.

S e a r c h  f o r a  g o o d m o d e l
i n  t h e s p a c e o f a l l  

p a t t e r n t r e e s !
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F U Z Z Y PAT T E R N  T R E E  I N D U C T I O N

§ Starting with primitive pattern 
trees (fuzzy subset of an 
attribute’s domain),

§ candidate trees are iteratively 
expanded and parameterized …

§ … and selected based on a tree  
performance measure (MSE on 
training data),

§ until a stopping condition is met.

A

107



F U Z Z Y PAT T E R N  T R E E  I N D U C T I O N

B

AVG

A

§ Starting with primitive pattern 
trees (fuzzy subset of an 
attribute’s domain),

§ candidate trees are iteratively 
expanded and parameterized …

§ … and selected based on a tree  
performance measure (MSE on 
training data),

§ until a stopping condition is met.

108



F U Z Z Y PAT T E R N  T R E E  I N D U C T I O N

§ Starting with primitive pattern 
trees (fuzzy subset of an 
attribute’s domain),

§ candidate trees are iteratively 
expanded and parameterized …

§ … and selected based on a tree  
performance measure (MSE on 
training data),

§ until a stopping condition is met.

109

B

AVG

A AND

D



F U Z Z Y PAT T E R N  T R E E  I N D U C T I O N

OR

§ Starting with primitive pattern 
trees (fuzzy subset of an 
attribute’s domain),

§ candidate trees are iteratively 
expanded and parameterized …

§ … and selected based on a tree  
performance measure (MSE on 
training data),

§ until a stopping condition is met.

110

B

AVG

A AND

D

C



F U Z Z Y PAT T E R N  T R E E  I N D U C T I O N

AVG

§ Starting with primitive pattern 
trees (fuzzy subset of an 
attribute’s domain),

§ candidate trees are iteratively 
expanded and parameterized …

§ … and selected based on a tree  
performance measure (MSE on 
training data),

§ until a stopping condition is met.

111

OR

B

AVG

A

AND

D

C

E



F U Z Z Y PAT T E R N  T R E E  I N D U C T I O N

greedy beam search

AND

§ Starting with primitive pattern 
trees (fuzzy subset of an 
attribute’s domain),

§ candidate trees are iteratively 
expanded and parameterized …

§ … and selected based on a tree  
performance measure (MSE on 
training data),

§ until a stopping condition is met.

Iterative construction of high-level features from low-level features.

Instead of top-down, pattern trees can also be induced bottom-up!
112

AVG

OR

B

AVG

AND

D

C

E

A B



E X A M P L E :  T H E  W I N E  Q U A L I T Y  D ATA

Pattern tree induced from a given set of data (wine properties + rating):

113

alcohol AVG

AND

acidity

acidity

OR

sulfates



F E AT U R E S  O F  F U Z Z Y PAT T E R N  T R E E S

§ interpretability of the model class

§ modularity:  recursive partitioning
of critria into sub-criteria

114

alcohol AVG

AND

acidity

acidity

OR

sulfates



F E AT U R E S  O F  F U Z Z Y PAT T E R N  T R E E S

115

§ interpretability of the model class

§ modularity:  recursive partitioning
of critria into sub-criteria

second
criterion

alcohol

AND



F E AT U R E S  O F  F U Z Z Y PAT T E R N  T R E E S

§ interpretability of the model class

§ modularity:  recursive partitioning
of critria into sub-criteria

116

second
criterion

Likewise:	type	of aggregation
vs.	concrete parametrization

alcohol AVG

AND

acidity



F E AT U R E S  O F  F U Z Z Y PAT T E R N  T R E E S

117

§ interpretability of the model class

§ modularity:  recursive partitioning
of critria into sub-criteria

§ flexibility without the tendency to
overfit the data

§ monotonicity in single attributes

§ built-in feature selection

§ competitive performance for
classification and regression

alcohol AVG

AND

acidity

acidity

OR

sulfates



E X P E R I M E N T S  W I T H  B E N C H M A R K  D ATA

Dataset PT-reg LR REPtree SMO-lin MLP SMO-rbf FR
auto-mpg 1 5 4 6 3 7 8
concrete 2 5 1 7 3 6 8
flare1M 6 1 2 5 7 3 8
flare2C 4 1 2 5 7 6 8
forestfires 6 4 3 2 8 1 7
housing 2 5 3 6 1 7 8
imports-85 5 3 7 1 2 6 8
machine 2 6 7 1 8 5 4
servo 2 5 3 7 1 8 6
slump 3 2 7 4 1 6 8
winequality-red 1 2 6 3 7 4 8
winequality-white 4 2 1 3 6 5 8
average	rank 3.17 3.42 3.83 4.17 4.5 5.33 7.42

118

Dataset PT-class C4.5 SVM RIPPER NN SLAVE

... ... ... ... ... ... ...

... ... ... ... ... ... ...

... ... ... ... ... ... ...
average rank 2.49 2.69 3.08 3.39 3.65 3.68

CLASSIFICATION

REGRESSION



C A S E  S T U D Y:  P O LY E S T E R  D Y E I N G

Modeling of color yield in polyester high temperature dyeing as a function of
disperse dyes concentration, temperature and time.

119

concentration

temperature

time

color yield
D Y E I N G  

P R O C E S S

Data: 120 input/output examples for 7 different colors.



C A S E  S T U D Y:  P O LY E S T E R  D Y E I N G

120

Example of a fuzzy pattern tree:

AVG

AND

TEMP

CONCTIME

Dyes #rules Te Co  Ti
Blue 266 13      3   4   4
Brown 1 8      2   2   3
Blue 56 10      3   2   4
Red 60 9      3   2   2
Yellow 7 9      2   3   2
Yellow 23      13      5   4   3
Mixture 12      4   4   3

Size of TSK models

In general, TSK (Takagi-Sugeno-Kang) 
models were judged to be much less
comprehensible than the FPT models!
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C A S E  S T U D Y:  P O LY E S T E R  D Y E I N G

FPT data-driven

FPT data-driven with
expert fuzzy sets

FPT model calibration

Mamdani models (purely
knowledge-driven)

linear regression

quadratic regression

Average generalization performance as a 
function of the sample size.



PAT T E R N  T R E E  S O F T WA R E

122

Check website of the Intelligent Systems Group @ UPB



O U T L I N E

123

①Prelude
②Machine learning 101

③Potential contributions of fuzzy logic
④Fuzzy pattern trees

⑤Learning from fuzzy data



L E A R N I N G  F R O M  F U Z Z Y D ATA

124

X1 X2 X3 X4 Y
10 0.42 0 132 10.5
12 0.90 1 154

0.61 1
11 1 94.2

0.66 0 654 12.6
19 0 127
32 0.72 1
15 0.12 0 62.5
... ... ... ... ...

H o w t o a n a l y z e a n d l e a r n f r o m s u c h  d a t a ?



T W O  I N T E R P R E TAT I O N S  O F  A F U Z Z Y S E T

The „ontic“ view (conjunctive interpretation):  
- a fuzzy set is a real data entity;
- an attribute can assume a fuzzy set as a „value“, i.e.,
- we have a (fuzzy set)-valued attribute.

125

3 5

duration

h



T W O  I N T E R P R E TAT I O N S  O F  A F U Z Z Y S E T

The „epistemic“ view (disjunctive interpretation): 

- The true value of the attribute is precise, and a fuzzy set is used to
express imprecise knowledge about this value (possibility distribution). 

60	 90	

speed

A FUZZY SET IS NOT THE DATA OBJECT, BUT REPRESENTS 
KNOWLEDGE ABOUT THIS OBJECT!

126
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The two interpretations, ontic and epistemic, call for very different 

extensions of methods for data analysis!



T H E  O N T I C  V I E W

128

interval-valued
observation

Reproducing imprecise observations by means of a set-valued function!



T H E  O N T I C  V I E W

129

interval-valued
observation



T H E  E P I S T E M I C  V I E W

130

interval-valued
observation

SET of REAL-VALUED functions instead of a single SET-VALUED function!



T H E  E P I S T E M I C  V I E W

131

A model is deemed possible if there is an INSTANTIATION (a possible
set of precise observations) for which it yields an optimal fit ...

à EXTENSION PRINCIPLE (applied to a data analysis method) ?



T H E  E X T E N S I O N  P R I N C I P L E

132

§ For example, interval arithmetics:

4-2
51

31

All instantiations of (single-valued) input values are treated the same and
equally contribute to the output!



T H E  E X T E N S I O N  P R I N C I P L E

§ A learning algorithm is a mapping from data to models:

133



T H E  E X T E N S I O N  P R I N C I P L E

§ A learning algorithm is a mapping from data to models:

134

SAMPLE	SPACE MODEL	SPACE



T H E  E X T E N S I O N  P R I N C I P L E

§ A learning algorithm is a mapping from data to models:

135

extension

SAMPLE	SPACE MODEL	SPACE



T H E  E X T E N S I O N  P R I N C I P L E

136

In data analysis, a method inducing a model from a set of data always comes
with certain MODEL ASSUMPTIONS (learning bias), and under these

assumptions, specific instantiations may appear more plausible than others!

Questioning the equal treatment of all instantiations ...

... to be explained through some simple examples. 



D ATA D I S A M B I G U AT I O N

137

classes



D ATA D I S A M B I G U AT I O N
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classes



D ATA D I S A M B I G U AT I O N
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classes



D ATA D I S A M B I G U AT I O N
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classes



D ATA D I S A M B I G U AT I O N

141

classes

The more biased the view, the less ambiguous the data looks like.



D ATA D I S A M B I G U AT I O N
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=	{						,							}

assume both class distributions to be Gaussian
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D ATA D I S A M B I G U AT I O N

143

plausible 
instantiation

=	{						,							}

assume both class distributions to be Gaussian

quadratic
discriminant
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D ATA D I S A M B I G U AT I O N

144

less plausible 
instantiation

=	{						,							}

assume both class distributions to be Gaussian



D ATA D I S A M B I G U AT I O N

145

MORE PLAUSIBLE LESS PLAUSIBLE

A less plausible instantiation, because
there is no LINEAR model with a good fit!

A plausible instantiation that can be fitted
reasonably well with a LINEAR model!



D ATA D I S A M B I G U AT I O N

146

PLAUSIBLE PLAUSIBLE

A plausible instantiation that can be fitted
quite well with a QUADRATIC model!

It all depends on how you look at the data!

A plausible instantiation that can be fitted
quite well with a QUADRATIC model!



§ In the setting of supervised learning with discriminative models, we suggest
that model identification and data disambiguation can support each other, 
and should be performed simultaneously.

§ Not only the data is telling us something about the model, but also the model
(assumptions) about the data.

identification

disambiguation

L E A R N I N G  F R O M  S E T- VA L U E D  D ATA

147

DATA MODEL



S U P E R S E T  L E A R N I N G

148

... is a specific type of weakly supervised learning, studied under different 
names in machine learning:

- learning from partial labels
- multiple label learning
- learning from ambiguously labeled examples
- ...

... also connected to learning from coarse data in statistics (Rubin, 1976; Heitjan and
Rubin, 1991), missing values, data augmentation (Tanner and Wong, 2012),

... as well as data modeling based on generalized sets and measures, such as fuzzy
data (Kwakernaak, 1978; Kruse and Meyer, 1987; Puri and Ralescu, 1986; Coppi et al., 
2006; Bandemer and Näther, 2011; Viertl, 2011) and belief functions (Denoeux, 1995).



S U P E RV I S E D  L E A R N I N G

149

data generating
process

loss function

Given a set of (i.i.d.) training data

D =
n

(x1, y1), . . . , (xN , yN )
o

⇢ X ⇥ Y

and a hypothesis space H ⇢ YX
, find a model with low risk

R(h) =

Z

X⇥Y
L
�

h(x), y
�

dP(x, y) .



E X A M P L E :  B I N A RY C L A S S I F I C AT I O N
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−4

−2
0

2
4

6
8

−3−2−1012345678

h : x 7!
q
w

>
x > 0

y

X = Rd,
Y = {�1,+1}



E X A M P L E :  B I N A RY C L A S S I F I C AT I O N

151

loss L(y, s) = f(ys)

0/1 loss

hinge  loss

0
signed score

ys = y(!>
x)



S U P E R S E T  L E A R N I N G

152

• Set of imprecise/ambiguous/coarse observations

O =
�
(x1, Y1), . . . , (xN , YN )

 

with supersets Yn 3 yn.

• An instantiation of O, denoted D, is obtained by replacing each Yn

with a candidate yn 2 Yn.

one of infinitely
many instantiations



E X A M P L E :  B I N A RY C L A S S I F I C AT I O N
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semi-supervised 
learning

=	{	 ,						}



E X A M P L E :  C L A S S I F I C AT I O N
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21.9 0 154.3

43.2 1 133.2

53.3 1 163.5

… … … … … … …

42.7 0 142.8

x1 x2 x3 y1 y2 y3 y4
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21.9 0 154.3

43.2 1 133.2

53.3 1 163.5

… … … … … … …

42.7 0 142.8

x1 x2 x3 y1 y2 y3 y4



E X A M P L E :  C L A S S I F I C AT I O N
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21.9 0 154.3

43.2 1 133.2

53.3 1 163.5

… … … … … … …

42.7 0 142.8

x1 x2 x3 y1 y2 y3 y4



E X A M P L E :  C O M P L E X  D ATA

157

set of consistent
completions

A � C

incomplete
observation

In label ranking, we learn mappings from instances to rankings:

x 7! A � C � D � B



L E A R N I N G  F R O M  S E T- VA L U E D  D ATA

158

precise
DATAMODEL

generation imprecise
DATA

imprecisiation

coarsening

P�(O |D)P✓(D)

• We are interested in learning with weak assumptions about the

coarsening process, and learning algorithms ought to be robust with

respect to these assumptions.

• Similar to epistemic random set setting (⌦, P, Y ), but with little

knowledge about multi-valued mapping Y : ⌦ ! 2Y .

• Discriminative learning, not generative.



E M P I R I C A L R I S K  M I N I M I Z AT I O N

159

In general, ERM won’t work well (unless N is large)…

Given a set of (i.i.d.) training data and a hypothesis space H ⇢ YX
, find

a model with minimal empirical risk

Remp(h) =
1

N

NX

i=1

L
�
h(xi), yi

�
.



G E N E R A L I Z E D  E R M

160

how well the (precise) model
fits the imprecise data

We propose a principle of generalized empirical risk minimization with
the empirical risk

R⇤
emp(h) =

1

N

NX

n=1

L⇤�Yn, h(xn)
�

and the optimistic superset loss (OSL) function

L⇤(Y, ŷ) = min
�
L(y, ŷ) | y 2 Y

 
.



G E N E R A L I Z E D  E R M

161

We propose a principle of generalized empirical risk minimization with
the empirical risk

R⇤⇤
emp(h) =

1

N

NX

n=1

L⇤⇤�Yn, h(xn)
�

and the optimistic fuzzy superset loss (OFSL) function

L⇤⇤(Y, ŷ) =

Z 1

0
L⇤

⇣
[Y ]↵, ŷ

⌘
d↵

.



G E N E R A L I Z E D  E R M

162

• Generalized ERM derives from a likelihood-based approach, which

proceeds from P(D,O |h),
• and makes (weak) assumptions about the coarsening P(O |D, h).

• Further, it exploits additivity of the loss.

• Finally, the logistic loss is replaced by any other loss function.

Why should generalized ERM actually work?



S P E C I A L  C A S E S
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S P E C I A L  C A S E S

164

Huber loss

L⇤⇤(Y, ŷ)



S P E C I A L  C A S E S

165

(generalized) Huber loss



L A B E L R A N K I N G

166

The Kendall loss used in label ranking:

L(⇡, ⇡̂) =
X

i<j

r
sign(⇡(i)� ⇡(j)) 6= sign(⇡̂(i)� ⇡̂(j))

z

– Cheng and H. (2015) compare an approach to label ranking based
on superset learning with state-of-the-art approaches.

– Very strong performance, more robust toward incompleteness.

New methods as natural instantiations of the 
generalized ERM framework!
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§ Under what conditions is (successful) learning in the superset 
setting actually possible?

§ Specifically, under what conditions does generalized ERM work?

§ Couldn’t the optimism induce a strong bias?

§ Might other principles be better?

L⇤
(Y, ŷ) = min

�
L(y, ŷ) | y 2 Y

 

L⇤
(Y, ŷ) = avg

�
L(y, ŷ) | y 2 Y

 

L⇤
(Y, ŷ) = max

�
L(y, ŷ) | y 2 Y
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add

add

systematic (adversarial) coarsening
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add

add

non-systematic (random) coarsening

or
or

add or
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positive class

negative class

h✓(x) =

⇢
+1 , x � ✓

�1 , x < ✓



A N  E X A M P L E

172

R(h✓)

threshold ✓
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R(h✓)

threshold ✓

Remp(h✓)
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All examples are coarsened with probability 0.2.

(xi, yi)

(xi, yi) with probability 0.8

(xi, {�1,+1}) with probability 0.2
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R(h✓)

R⇤(h✓)

threshold ✓

All examples are coarsened with probability 0.2.
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Examples with x between 1 and 2 are coarsened.

(xi, yi)

(xi, {�1,+1}) if xi 2 [1, 2]

(xi, yi) otherwise
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R⇤(h✓)

R(h✓)

threshold ✓

Examples with x between 1 and 2 are coarsened.
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Positive examples are coarsened with probability 1/2.

(xi,+1)

(xi,+1) with probability 0.5

(xi, {�1,+1}) with probability 0.5

(xi,�1) (xi,�1)
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R⇤(h✓)

R(h✓)

threshold ✓

Positive examples are coarsened with probability 1/2.
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The balanced benefit condition:

0  ⌘1  inf
h2H

R⇤(h)
R(h)

 sup
h2H

R⇤(h)
R(h)

 ⌘2  1 ,

where R⇤(h) is the expected superset loss of h.

For su�ciently large sample size,

R(ĥ)  R(h⇤) +�(dH, ✏, �, ⌘1, ⌘2) ,

with probability 1� �, where dH is the Natarajan dimension of H, h⇤
the

Bayes predictor and ĥ the minimizer of R⇤
emp.
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Let ✓ = log(2/(1 + �)) and dH the Natarajan dimension of H. Define

n0(H, ✏, �) =
4

✓✏

✓
dH

✓
log(4dH + 2 logL+ log

✓
1

✓✏

◆◆
+ log

✓
1

�

◆
+ 1

◆
.

Then, in the realizable case, with probability at least 1� �, the model with

the smallest empirical superset loss on a set of training data of size

n > n0(H, ✏, �) has a generalisation error of at most ✏.

Liu and Dietterich (2014) consider the ambiguity degree, which is

defined as the largest probability that a particular distractor label

co-occurs with the true label in multi-class classification:

� = sup
n

PY⇠Ds(x,y)(` 2 Y ) | (x, y) 2 X ⇥ Y, ` 2 Y, p(x, y) > 0, ` 6= y
o



D ATA I M P R E C I S I AT I O N

182

So far: Imprecision as a necessary evil
Observations are imprecise/incomplete, and we have to deal with that!

Now: Imprecision as a means for modeling
Deliberately turn precise into imprecise data, so as to modulate the
influence of an observation on the learning process!

Motivated by the following monotonicity property:

Y ⇢ Y 0 ) L⇤(Y, ·) � L⇤(Y 0, ·)
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L(yi, ·)

wi L(yi, ·) L⇤(Yi, ·)

modulating the influence of a training

example (xi, yi) by multiplying the

loss with a constant wi.

modulating the influence of a

training example (xi, yi) by
coarsening the observation yi.

We suggest an alternative way of weighing examples, namely, via 
„data imprecisiation“ ...
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We suggest an alternative way of weighing examples, namely, via 
„data imprecisiation“ ...

1

11

full support for
precise observation
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Different ways of (individually) discounting the loss function.

lo
s

s

In (Lu and H., 2015), we empirically compared standard locally weighted
linear regression with this approach and essentially found no difference. 

weighted loss

OSL 
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certainly positive

We suggest an alternative way of weighing examples, namely, 
via „data imprecisiation“ ...

1



F U Z Z Y M A R G I N  L O S S E S

187

G E N E R A L I Z E D  H I N G E  L O S S

w=1
w=3/4

w=1/2

w=1/4

w=0
score s

loss f(ys)
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Different ways of (individually) discounting the loss function.

w=1 
w=3/4 

w=1/2 

w=1/4 

w=0 

w=1 
w=3/4 

w=1/2 

w=1/4 

w=0 

weighted lossOSL 
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the	hat	loss
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C O N C L U S I O N

§ Machine learning is a flourishing field, at the core of data science, and is 
apparently doing well without fuzzy logic.

§ Yet, interesting contributions to fuzzy machine learning have already 
been made, and even more significant ones are conceivable. 

§ Going beyond straightforward fuzzy extensions of conventional ML 
methods, we need to focus on the right topics, correctly appraise the 
(complementary) role of fuzzy sets in learning from data, and avoid 
unwarranted claims.

§ As an example of using fuzzy systems for modeling, we presented fuzzy 
pattern trees as a novel model class that nicely combines expressivity 
and transparency. 

§ In addition to modeling functional dependencies, fuzzy sets can also be 
used for modeling data; we addressed this issue and presented basic 
ideas of (fuzzy) superset learning. 
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